【題目】已知點,橢圓:的離心率為,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點. 設(shè)過點的動直線與相交于兩點.
(1)求的方程;
(2)是否存在這樣的直線,使得的面積為,若存在,求出的方程;若不存在,請說明理由.
【答案】(1);(2)存在這樣的直線:或.
【解析】
(1)由可求得,再由離心率求得,最后由公式可得,從而橢圓標(biāo)準(zhǔn)方程;
(2)假設(shè)存在,分析斜率一定存在,設(shè)其方程為,同時設(shè)交點,
聯(lián)立消去得, 注意,得的范圍,由韋達(dá)定理得. 由圓錐曲線中弦長公式求得弦長,求得點到直線的距離,表示出三角形的面積,由解得,說明存在.
(1)設(shè),因為直線的斜率為,
所以,.
又,解得,
所以橢圓的方程為.
(2)當(dāng)軸時,不合題意,由題意可設(shè)直線的方程為:,
聯(lián)立消去得,
當(dāng),所以,即或時 ,
.
所以 ,
點到直線的距離,
所以,
設(shè),則,
,解得或,即,
所以存在這樣的直線:或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),斜率為的直線與相切于點.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)實數(shù)時,討論的極值點.
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記矩陣中的第行第列上的元素為,現(xiàn)對矩陣中的元素按如下算法所示的步驟作變動(直到不能變動為止):若,則,,,若,則不變動,這樣得到矩陣B,再對矩陣B中的元素按如下算法所示的步驟作變動(直到不能變動為止):若,則,,;若,則不變動,這樣得到矩陣,則________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方(梯)隊和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊,其隊員的身高一般都在184cm至190cm之間.經(jīng)過隨機(jī)調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據(jù)直方圖得到P(C)的估計值為0.5.
(1)求直方圖中a,b的值;
(2)估計這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
⑴求函數(shù)的單調(diào)區(qū)間;
⑵如果對于任意的,總成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且.
(1)的通項公式為__________;
(2)在、、、、這項中,被除余的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計,得到如下人數(shù)分布表.
購買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)求購買金額不少于45元的頻率;
(2)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).
不少于60元 | 少于60元 | 合計 | |
男 | 40 | ||
女 | 18 | ||
合計 |
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(是參數(shù),是大于0的常數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的極坐標(biāo)方程和圓的直角坐標(biāo)方程;
(2)分別記直線:,與圓、圓的異于原點的交點為,,若圓與圓外切,試求實數(shù)的值及線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)進(jìn)行自主招生測試,需要對邏輯思維和閱讀表達(dá)進(jìn)行能力測試.學(xué)校對參加測試的200名學(xué)生的邏輯思維成績、閱讀表達(dá)成績以及這兩項的總成績進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如圖所示,下列敘述正確的是( )
A.甲同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前
B.乙同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前
C.甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前
D.甲同學(xué)的總成績排名比丙同學(xué)的總成績排名更靠前
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com