定義在區(qū)間[a,b]的長(zhǎng)度為b-a,用[x]表示不超過(guò)x的最大整數(shù).設(shè)f(x)=[x](x-[x]),g(x)=x-1,則0≤x≤2012時(shí),不等式f(x)≤g(x)的解集的區(qū)間長(zhǎng)度為   
【答案】分析:根據(jù)0≤x≤2012,分兩種情況考慮:當(dāng)0≤x<1時(shí),[x]=0,可得出x-1小于0,進(jìn)而確定出f(x)=0,g(x)小于0,進(jìn)而得到此時(shí)f(x)大于g(x),不合題意;當(dāng)1≤x≤2012時(shí),假設(shè)n≤x<n+1,則[x]=n,表示出f(x),利用作差法判斷出f(x)-g(x)的符合為負(fù),可得出不等式f(x)≤g(x)的解集,即可求出解集的區(qū)間長(zhǎng)度.
解答:解:當(dāng)0≤x<1時(shí),[x]=0,x-1<0,
∴f(x)=0,g(x)=x-1<0,即f(x)>g(x),不合題意;
當(dāng)1≤x≤2012時(shí),假設(shè)n≤x<n+1,則[x]=n,
∴f(x)=n(x-n),又g(x)=x-1,
∴f(x)-g(x)=n(x-n)-x+1=(n-1)x-n2+1<(n-1)(n+1)-n2+1=0,
∴不等式f(x)≤g(x)的解集為[1,2012],
則不等式f(x)≤g(x)的解集的區(qū)間長(zhǎng)度為2012-1=2011.
故答案為:2011
點(diǎn)評(píng):此題考查了其他不等式的解法,利用了分類討論及轉(zhuǎn)化的思想,是一道綜合性較強(qiáng)的試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)是定義在區(qū)間[a,b]上,值域?yàn)閇-3,5]的增函數(shù),則下列說(shuō)法不正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面給出的4個(gè)命題:
①已知命題p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,則?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0
;
②函數(shù)f(x)=2-x-sinx在[0,2π]上恰好有2個(gè)零點(diǎn);
③對(duì)于定義在區(qū)間[a,b]上的連續(xù)不斷的函數(shù)y=f(x),存在c∈(a,b),使f(c)=0的必要不充分條件是f(a)f(b)<0;
④對(duì)于定義在R上的函數(shù)f(x),若實(shí)數(shù)x0滿足f(x0)=x0,則稱x0是f(x)的不動(dòng)點(diǎn).若f(x)=x2+ax+1不存在不動(dòng)點(diǎn),則a的取值范圍是(-1,3).
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•眉山一模)定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果?ξ∈[a,b],使得f(b)-f(a)=f'(ξ)(b-a),則稱ξ為區(qū)間[a,b]上的“中值點(diǎn)”.下列函數(shù):
①f(x)=3x+2;   ②f(x)=x2-x+1;   ③f(x)=ln(x+1);   ④f(x)=(x-
12
)3

在區(qū)間[0,1]上“中值點(diǎn)”多于一個(gè)的函數(shù)序號(hào)為
①④
①④
.(寫出所有滿足條件的函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇二模)定義在區(qū)間[a,b]的長(zhǎng)度為b-a,用[x]表示不超過(guò)x的最大整數(shù).設(shè)f(x)=[x](x-[x]),g(x)=x-1,則0≤x≤2012時(shí),不等式f(x)≤g(x)的解集的區(qū)間長(zhǎng)度為
2011
2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)定義在區(qū)間[a,b]上,設(shè)“min{f(x)|x∈D}”表示函數(shù)f(x)在集合D上的最小值,“max{f(x)|x∈D}”表示函數(shù)f(x)在集合D上的最大值.現(xiàn)設(shè)f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),
若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為區(qū)間[a,b]上的“第k類壓縮函數(shù)”.
(Ⅰ) 若函數(shù)f(x)=x3-3x2,x∈[0,3],求f(x)的最大值,寫出f1(x),f2(x)的解析式;
(Ⅱ) 若m>0,函數(shù)f(x)=x3-mx2是[0,m]上的“第3類壓縮函數(shù)”,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案