1.當(dāng)行駛的6輛軍車行駛至A處時,接上級緊急通知,這6輛軍車需立即沿B、C兩路分開縱隊(duì)行駛,要求B、C每路至少2輛但不多于4輛.則這6輛軍車不同的分開行駛方案總數(shù)是( 。
A.50B.1440C.720D.2160

分析 確定B、C兩路軍車的量數(shù)類型,然后求解這6輛軍車不同的分開行駛方案總數(shù).

解答 解:由題意可知B、C兩路軍車的量數(shù)類型有2、4;3、3;4、2;三種類型.由于軍車互不相同,排列是有順序的,2、4;4、2;類型的結(jié)果都是:A62A44.3、3類型的結(jié)果為:A63A33
則這6輛軍車不同的分開行駛方案總數(shù)是:2A62A44+A63A33=2160.
故選:D.

點(diǎn)評 本題考查排列組合的實(shí)際應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知△ABC是等邊三角形,點(diǎn)D滿足$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$=2$\overrightarrow{AD}$,且|$\overrightarrow{CD}$|=$\sqrt{3}$,那么$\overrightarrow{DA}$•$\overrightarrow{DC}$=( 。
A.-$\frac{3}{7}$B.$\frac{3}{7}$C.-$\frac{4}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2+b|x-1|,其中a,b∈(-4,4)且a≠0.當(dāng)a∈(0,4),b=1時,求函數(shù)f(x)在[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-2),x>1}\end{array}\right.$,若方程f(x)-mx-1=0恰有兩個不同實(shí)根,則正實(shí)數(shù)m的取值范圍為( 。
A.($\frac{e-1}{2}$,1)∪(1,e-1)B.($\frac{e-1}{2}$,1)∪(1,e-1]C.($\frac{e-1}{3}$,1)∪(1,e-1)D.($\frac{e-1}{3}$,1)∪(1,e-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a,b∈R,且a-1+(b+2)i=0.i為虛數(shù)單位,則復(fù)數(shù)(a+bi)2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)x∈(0,1)時f(x)>0,且x,y∈(0,+∞)時總有f(x•y)=f(x)+f(y)
(1)求證:f($\frac{x}{y}$)=f(x)-f(y);
(2)證明:函數(shù)f(x)在定義域(0,+∞)上為減函數(shù);
(3)若f(3)=1,且f(a)<f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)$\overrightarrow{a}$,$\overrightarrow$不共線的兩個向量,若命題p:$\overrightarrow{a}•\overrightarrow$>0,命題q:$\overrightarrow{a},\overrightarrow$夾角是銳角,則命題p是命題q成立的   ( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足:a1=2,(4an+1-5)(4an-1)=-3,則$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+$\frac{1}{{a}_{3}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{3}{2}$(3n-1)-2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)$\frac{1}{1+i}$的虛部是( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}i$D.$-\frac{1}{2}i$

查看答案和解析>>

同步練習(xí)冊答案