已知f(x)是定義域在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=
2x
4x+1
,求f(x)在(-1,1)上的解析式.
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用奇函數(shù)的性質(zhì)即可得出.
解答: 解:設(shè)x∈(-1,0),則-x∈(0,1)時(shí)
∵當(dāng)x∈(0,1)時(shí),f(x)=
2x
4x+1

∴f(-x)=
2-x
4-x+1
=
2x
1+4x

∵f(x)是定義域在(-1,1)上的奇函數(shù),
∴f(0)=0,f(x)=-f(-x)=-
2x
1+4x

∴f(x)=
2x
4x+1
,x∈(0,1)
0,x=0
-
2x
4x+1
,x∈(-1,0)
點(diǎn)評(píng):本題考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
a-a-1
(ax-a-x)(0<a<1),
(1)求證:f(x)為奇函數(shù);   
(2)當(dāng)x∈(-1,1),解不等式f(1-m)+f(m-2)<0;
(3)若f(x)-4當(dāng)且僅當(dāng)在x∈(-∞,2)上取負(fù)值,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知V1=
△x
t1
,a=
2△x(t1-t2)
t1t2(t1+t2)
,化簡(jiǎn)可得V1=V0+a
t1
2
,求V0的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程2x+3x-7=0在下列哪個(gè)區(qū)間有實(shí)根(  )
A、(-1,0)
B、(0,1)
C、(1,2)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
4x+1
2x
,若f(lg(log210))=5,那么f(lg(lg2))的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,函數(shù)f(x)是定義在[-3,3]上的偶函數(shù),當(dāng)0≤x≤3時(shí),函數(shù)f(x)的圖象如圖所示,那么不等式
x
f(x)
≤0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=lnx的定義域?yàn)锳,值域?yàn)锽,則A∩B=( 。
A、(0,+∞)
B、[0,1]
C、(0,1]
D、[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x向左平移
π
6
個(gè)單位后,得到函數(shù)y=g(x),下列關(guān)于y=g(x)的說(shuō)法正確的是(  )
A、一個(gè)対稱(chēng)中心為(-
π
3
,0)
B、x=-
π
6
是其一個(gè)對(duì)稱(chēng)軸
C、減區(qū)間為[
π
12
+kπ,
12
+kπ],k∈Z
D、增區(qū)間為[kπ,
π
12
+kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=2log52,b=21.1,c=(
1
2
)-0.8
,則a、b、c的大小關(guān)系是( 。
A、.a<c<b
B、c<b<a
C、a<b<c
D、b<c<a

查看答案和解析>>

同步練習(xí)冊(cè)答案