a
=(2,1),
b
=(-1,2)則
a
b
上的投影為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量的數(shù)量積定義得到
a
b
上的投影為
a
b
|
b
|
,計(jì)算即可.
解答: 解:由題意
a
b
上的投影為
a
b
|
b
|
=
-2+2
5
=0;
故答案為:0;
點(diǎn)評(píng):本題考查了一個(gè)向量在另一個(gè)向量上的投影求法;根據(jù)向量投影的定義,
a
b
上的投影為|
a
|cos<
a
,
b
>=
a
b
|
b
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)欲制定一項(xiàng)新的制度,學(xué)生會(huì)為此進(jìn)行了問卷調(diào)查,所有參與問卷調(diào)查的人中,持有“支持”、“不支持”和“既不支持也不反對(duì)”的人數(shù)如下表所示:
支持既不支持也不反對(duì)不支持
高一學(xué)生800450200
高二學(xué)生100150300
(Ⅰ)在所有參與問卷調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從“支持”的人中抽取了45人,求n的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人,從這5人中任意選取2人,求至少有1人是高一學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,1),點(diǎn)B在曲線C1:y=ex-1上,若線段AB與曲線C2:y=
1
x
相交且交點(diǎn)恰為線段AB的中點(diǎn),則稱點(diǎn)B為曲線C1與曲線C2的一個(gè)“相關(guān)點(diǎn)”,記曲線C1與曲線C2的“相關(guān)點(diǎn)”的個(gè)數(shù)為n,則( 。
A、n=0B、n=1
C、n=2D、n>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)對(duì)任意兩個(gè)不相等的實(shí)數(shù)a,b,總有
f(a)-f(b)
a-b
>0成立,則必有( 。
A、函數(shù)f(x)是先增加后減少
B、f(x)在R上是增函數(shù)
C、函數(shù)f(x)是先減少后增加
D、f(x)在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2cos2x-cos(2x-
π
3
)

(Ⅰ)當(dāng)x∈[0,
π
2
]
時(shí),求f(x)的值域;
(Ⅱ)已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(B+C)=
3
2
,a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓M上任一點(diǎn),且|PF1•PF2|最大值取值范圍為[2c2,3c2]其中c=
a2+b2
,則橢圓M的離心率為 ( 。
A、[
2
2
,1)
B、[
3
3
,
2
2
]
C、[
3
3
,1)
D、[
1
3
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
0
(ex+2x)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,則下列不等式成立的是( 。
A、a>b>
a+b
2
ab
B、a>
ab
a+b
2
>b
C、a>
a+b
2
>b>
ab
D、a>
a+b
2
ab
>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)數(shù)成等差數(shù)列,這三個(gè)數(shù)的和為26,三數(shù)之積為-24,求這三個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案