16.若f(x)=xcosx,則函數(shù)f(x)的導函數(shù)f'(x)等于( 。
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

分析 根據(jù)導數(shù)的運算法則計算即可.

解答 解:f(x)=xcosx,則函數(shù)f(x)的導函數(shù)f'(x)=cosx-xsinx,
故選:D

點評 本題考查了導數(shù)的運算法則,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.計算(字母為正數(shù))
(1)(4a2b${\;}^{\frac{2}{3}}$)(-2a${\;}^{\frac{1}{3}}$b${\;}^{-\frac{2}{3}}$)÷(-b${\;}^{-\frac{1}{2}}$);
(2)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$-($\sqrt{2}$-1)0+(-1)2016+2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,三角形VAB為等邊三角形,AC⊥BC且     AC=BC=$\sqrt{2}$,O、M分別為AB和VA的中點.
(1)求證:VB∥平面MOC;
(2)求直線MC與平面VAB所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.銷售甲、乙兩種商品所得利潤分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關系有經(jīng)驗公式P=3$\sqrt{t}$,Q=t.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(萬元).求:
(1)經(jīng)營甲、乙兩種商品的總利潤y(萬元)關于x的函數(shù)表達式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤y達到最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若α為銳角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,則cosα=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左頂點為A,右焦點為F,上頂點為B,下頂點為C,若直線AB與直線CF的交點為(3a,16),則橢圓的標準方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖,則f(-$\frac{π}{6}$)+f(-$\frac{π}{12}$)+f(0)=(  )
A.$\frac{1-\sqrt{2}}{2}$B.$\frac{1+\sqrt{2}}{2}$C.$\frac{1-\sqrt{3}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在等腰梯形ABCD中,已知AB∥DC,∠ABC=60°,BC=$\frac{1}{2}$AB=2,動點E和F分別在線段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{2λ}$$\overrightarrow{DC}$,則$\overrightarrow{AE}$•$\overrightarrow{BF}$的最小值為4$\sqrt{6}$-13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知雙曲線C與雙曲線$\frac{{x}^{2}}{3}$-y2=1有公共焦點,且過點(2,$\sqrt{2}$).求雙曲線C的方程.

查看答案和解析>>

同步練習冊答案