4.在區(qū)間[0,1]內(nèi)隨機取兩個數(shù)分別為a,b,則使得方程x2+2ax+b2=0有實根的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 本題是一個等可能事件的概率,試驗發(fā)生包含的事件是在區(qū)間[0,1]上任取兩個數(shù)a和b,寫出事件對應(yīng)的集合,做出面積,滿足條件的事件是關(guān)于x的方程x2+2ax+b2=0有實數(shù)根,根據(jù)二次方程的判別式寫出a,b要滿足的條件,寫出對應(yīng)的集合,做出面積,得到概率.

解答 解:由題意知本題是一個等可能事件的概率,
∵試驗發(fā)生包含的事件是在區(qū)間[0,1]上任取兩個數(shù)a和b,
事件對應(yīng)的集合是Ω={(a,b)|0≤a≤1,0≤b≤1}
對應(yīng)的面積是sΩ=1
滿足條件的事件是關(guān)于x的方程x2+2ax+b2=0有實數(shù)根,
即4a2-4b2≥0,
∴a≥b,
事件對應(yīng)的集合是A={(a,b)|0≤a≤1,0≤b≤1,a≥b}
對應(yīng)的圖形的面積是sA=$\frac{1}{2}$,
∴根據(jù)等可能事件的概率得到P=$\frac{1}{2}$.
故選C.

點評 本題考查幾何概型,古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過長度、面積、和體積的比值得到.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)證明:CP⊥BD;
(2)若AP=PC=2$\sqrt{2}$,求二面角A-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)?shù)列{an}是等比數(shù)列,滿足a2=2,a2+a4+a6=14,則a6=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)設(shè)P為曲線C上的動點,求點P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知實數(shù)a,b,c滿足a,b,c∈R+
(Ⅰ)若ab=1,證明:($\frac{1}{a}$+$\frac{1}$)2≥4;
(Ⅱ)若a+b+c=3,且$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤|2x-1|-|x-2|+3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n(n∈N*)項和為Sn,a3=3,且λSn=anan+1,在等比數(shù)列{bn}中,b1=2λ,b3=a15+1.
(Ⅰ)求數(shù)列{an}及{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項和為Tn,且$({S_n}+\frac{n}{2}){c_n}=1$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an},{bn}的首項a1=b1=1,且滿足(an+1-an2=4,|bn+1|=q|bn|,其中n∈N*.設(shè)數(shù)列{an},{bn}的前n項和分別為Sn,Tn
(Ⅰ)若不等式an+1>an對一切n∈N*恒成立,求Sn;
(Ⅱ)若常數(shù)q>1且對任意的n∈N*,恒有$\sum_{k=1}^{n+1}$|bk|≤4|bn|,求q的值;
(Ⅲ)在(2)的條件下且同時滿足以下兩個條件:
(ⅰ)若存在唯一正整數(shù)p的值滿足ap<ap-1;
(ⅱ) Tm>0恒成立.試問:是否存在正整數(shù)m,使得Sm+1=4bm,若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示的多面體中,底面ABCD為正方形,△GAD為等邊三角形,∠GDC=90°,點E是線段GC的中點.
(1)若點P為線段GD的中點,證明:平面APE⊥平面GCD;
(2)求平面BDE與平面GCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={1,2,3,4,9},N={x|x∈M且$\sqrt{x}$∈M},則M∩N中的元素個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案