已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.
(Ⅰ) ;(Ⅱ) 
(Ⅲ)可以找到這樣的定點,使得為定值. 如點的坐標為時,比值為;
的坐標為時,比值為

試題分析:(Ⅰ)設(shè)切線方程為 ,易得,解得……4分
∴切線方程為 
(Ⅱ)圓心到直線的距離為,設(shè)圓的半徑為,則,
∴⊙的方程為 
(Ⅲ)假設(shè)存在這樣的點,點的坐標為,相應(yīng)的定值為,
根據(jù)題意可得,∴,
  (*),
又點在圓上∴,即,代入(*)式得:
  
若系數(shù)對應(yīng)相等,則等式恒成立,∴,
解得 
∴可以找到這樣的定點,使得為定值. 如點的坐標為時,比值為
的坐標為時,比值為
點評:中檔題,涉及圓的題目,在近些年高考題中是屢有考查,求圓標準方程,研究直線與圓的位置關(guān)系。求圓的標準方程,主要考慮定義法、待定系數(shù)法。涉及直線于圓位置關(guān)系問題,往往應(yīng)用韋達定理或充分利用“特征三角形”,通過半徑、弦長一半、圓心到弦的距離,建立方程(組)。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線平分圓,則的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若實數(shù)x,y滿足x²+y²-2x+4y=0,則x-2y的最大值為 (    )
A.B.10C.9D.5+2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓的方程為(x-3)2+y2=9,則圓心坐標為(  )
A.(3,0)B.(-3,0)C.(0,3)D.(0,-3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若方程表示圓,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓方程:,求圓心到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,的外接圓的切線的延長線交于點的平分線與交于點D.

(1)求證:
(2)若的外接圓的直徑,且,=1.求長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M必在點N的右側(cè)),且已知橢圓D:的焦距等于,且過點

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M斜率不為零的直線與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾角互補.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)在直角坐標系xOy中,以原點O為圓心的圓與直線x-y-4=0相切,
(Ⅰ)求圓O的方程;
(Ⅱ)若已知點P(3,2),過點P作圓O的切線,求切線的方程。

查看答案和解析>>

同步練習冊答案