【題目】某屆奧運會上,中國隊以26金18銀26銅的成績列金牌榜第三獎牌榜第二.某校體育愛好者在高三年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了60人,具體的調查結果如下表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 6 | 10 | 13 | 11 | 9 | 11 |
滿意人數(shù) | 5 | 9 | 10 | 6 | 7 | 7 |
(1)在高三年級全體學生中隨機抽取1名學生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班和二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
【答案】(1)(2)分布列見解析,
【解析】
(1)由表中數(shù)據(jù)可計算得到持滿意態(tài)度的頻率,由此可得結果;
(2)根據(jù)一班和二班持不滿意態(tài)度的人數(shù)可確定所有可能的取值,根據(jù)超幾何分布概率公式計算可得每個取值對應的概率,由此得到的分布列;根據(jù)數(shù)學期望的計算公式計算可得期望.
(1)由表中數(shù)據(jù)知:在被抽取的人中,持滿意態(tài)度的學生共人
持滿意態(tài)度的頻率為
據(jù)此估計,高三年級全體學生中隨機抽取名學生,該生持滿意態(tài)度的概率為
(2)一班和二班中持不滿意態(tài)度的共人 的所有可能取值為
, ,
的分布列為:
.
科目:高中數(shù)學 來源: 題型:
【題目】已知如圖,直線是拋物線()和圓C:的公切線,切點(在第一象限)分別為P、Q.F為拋物線的焦點,切線交拋物線的準線于A,且.
(1)求切線的方程;
(2)求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程是(為參數(shù)),把曲線橫坐標縮短為原來的,縱坐標縮短為原來的一半,得到曲線,直線的普通方程是,以坐標原點為極點,軸正半軸為極軸建立極坐標系;
(1)求直線的極坐標方程和曲線的普通方程;
(2)記射線與交于點,與交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商家耗資4500萬元購進一批(虛擬現(xiàn)實)設備,經(jīng)調試后計劃明年開始投入使用,由于設備損耗和維護,第一年需維修保養(yǎng)費用200萬元,從第二年開始,每年的維修保并費用比上一年增40萬元.該設備使用后,每年的總收入為2800萬元.
(1)求盈利額(萬元)與使用年數(shù)之間的函數(shù)關系式;
(2)該設備使用多少年,商家的年平均盈利額最大?最大年平均盈利額是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正整數(shù)數(shù)列的前項和為,前項積,若,則稱數(shù)列為“數(shù)列”.
(1)判斷下列數(shù)列是否是數(shù)列,并說明理由;①2,2,4,8;②8,24,40,56
(2)若數(shù)列是數(shù)列,且.求和;
(3)是否存在等差數(shù)列是數(shù)列?請闡述理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】手機給人們的生活帶來便利的同時,也給青少年的成長帶來不利的影響,有人沉迷于手機游戲無法自拔,嚴重影響了自己的學業(yè),某學校隨機抽取個班,調查各班帶手機來學校的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為將數(shù)據(jù)分組成,,…,,時,所作的頻率分布直方圖是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面四邊形中,,是,中點,,,,將沿對角線折起至,使平面平面,則四面體中,下列結論不正確的是( )
A. 平面
B. 異面直線與所成的角為
C. 異面直線與所成的角為
D. 直線與平面所成的角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)估計該公司投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 1 | 3 | 4 | 7 |
表中的數(shù)據(jù)顯示,x與y之間存在線性相關關系,請將(2)的結果填入上表的空白欄,并計算y關于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司需要對所生產(chǎn)的三種產(chǎn)品進行檢測,三種產(chǎn)品數(shù)量(單位:件)如下表所示:
產(chǎn)品 | A | B | C |
數(shù)量(件) | 180 | 270 | 90 |
采用分層抽樣的方法從以上產(chǎn)品中共抽取6件.
(1)求分別抽取三種產(chǎn)品的件數(shù);
(2)將抽取的6件產(chǎn)品按種類編號,分別記為,現(xiàn)從這6件產(chǎn)品中隨機抽取2件.
(ⅰ)用所給編號列出所有可能的結果;
(ⅱ)求這兩件產(chǎn)品來自不同種類的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com