【題目】在我國,大學生就業(yè)壓力日益嚴峻,伴隨著政府政策引導與社會觀念的轉變,大學生創(chuàng)業(yè)意識,就業(yè)方向也悄然發(fā)生轉變.某大學生在國家提供的稅收,擔保貸款等很多方面的政策扶持下選擇加盟某專營店自主創(chuàng)業(yè),該專營店統(tǒng)計了近五年來創(chuàng)收利潤數(單位:萬元)與時間(單位:年)的數據,列表如下:
(Ⅰ)依據表中給出的數據,是否可用線性回歸模型擬合與的關系,請計算相關系數并加以說明(計算結果精確到).(若,則線性相關程度很高,可用線性回歸模型擬合);
附:相關系數公式
參考數據.
(Ⅱ)該專營店為吸引顧客,特推出兩種促銷方案.
方案一:每滿元可減元;
方案二:每滿元可抽獎一次,每次中獎的概率都為,中獎就可以獲得元現金獎勵,假設顧客每次抽獎的結果相互獨立.
①某位顧客購買了元的產品,該顧客選擇參加兩次抽獎,求該顧客獲得元現金獎勵的概率.
②某位顧客購買了元的產品,作為專營店老板,是希望該顧客直接選擇返回元現金,還是選擇參加三次抽獎?說明理由.
【答案】(Ⅰ)見解析;
(Ⅱ)①;②見解析.
【解析】
(Ⅰ)先由題求得t和y的平均數,再利用相關系數公式求得r,可得結果;
(Ⅱ)①顧客選擇參加兩次抽獎的概率為,②先求得選擇三次抽獎的期望,再與選擇不抽獎進行比較可得結果.
(Ⅰ)由題
則
故y與t的線性相關程度很高,可用線性線性回歸模型擬合
(Ⅱ)①顧客選擇參加兩次抽獎,設他獲得100元現金獎勵為事件A.
②設X表示顧客在三次抽獎中中獎的次數,由于顧客每次抽獎的結果相互獨立,則
所以
由于顧客每中一次可獲得100元現金獎勵,因此該顧客在三次抽獎中可獲得的獎勵金額的均值為
由于顧客參加三次抽獎獲得現金獎勵的均值120小于直接返現的150元,所以專營店老板希望顧客參加抽獎
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,點,為直線:上的動點,過作的垂線,該垂線與線段的垂直平分線交于點,記的軌跡為.
(1)求的方程;
(2)若過的直線與曲線交于,兩點,直線,與直線分別交于,兩點,試判斷以為直徑的圓是否經過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】矩陣乘法運算的幾何意義為平面上的點在矩陣的作用下變換成點,記,且.
(1)若平面上的點在矩陣的作用下變換成點,求點的坐標;
(2)若平面上相異的兩點、在矩陣的作用下,分別變換為點、,求證:若點為線段上的點,則點在的作用下的點在線段上;
(3)已知△的頂點坐標為、、,且△在矩陣作用下變換成△,記△與△的面積分別為與,求的值,并寫出一般情況(三角形形狀一般化且變換矩陣一般化)下與的關系(不要求證明).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學2018年的高考考生人數是2015年高考考生人數的倍,為了更好地對比該?忌纳龑W情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結論正確的是
A. 與2015年相比,2018年一本達線人數減少
B. 與2015年相比,2018年二本達線人數增加了倍
C. 2015年與2018年藝體達線人數相同
D. 與2015年相比,2018年不上線的人數有所增加
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在長方體中,點E是棱上的一個動點,若平面交棱于點F,給出下列命題:
①四棱錐的體積恒為定值;
②對于棱上任意一點E,在棱上均有相應的點G,使得平面;
③O為底面對角線和的交點,在棱上存在點H,使平面;
④存在唯一的點E,使得截面四邊形的周長取得最小值.
其中為真命題的是____________________.(填寫所有正確答案的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,圓.
(Ⅰ)是拋物線的焦點,是拋物線上的定點,,求拋物線的方程;
(Ⅱ)在(Ⅰ)的條件下,過點的直線與圓相切,設直線交拋物線于,兩點,則在軸上是否存在點使?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣x+1.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程:
(2)若非零實數a使得f(x)axax2對x∈[1,+∞)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某共享單車經營企業(yè)欲向甲市投放單車,為制定適宜的經營策略,該企業(yè)首先在已投放單車的乙市進行單車使用情況調查.調查過程分隨機問卷、整理分析及開座談會三個階段.在隨機問卷階段,A,B兩個調查小組分赴全市不同區(qū)域發(fā)放問卷并及時收回;在整理分析階段,兩個調查小組從所獲取的有效問卷中,針對15至45歲的人群,按比例隨機抽取了300份,進行了數據統(tǒng)計,具體情況如下表:
組別 年齡 | A組統(tǒng)計結果 | B組統(tǒng)計結果 | ||
經常使用單車 | 偶爾使用單車 | 經常使用單車 | 偶爾使用單車 | |
27人 | 13人 | 40人 | 20人 | |
23人 | 17人 | 35人 | 25人 | |
20人 | 20人 | 35人 | 25人 |
(1)先用分層抽樣的方法從上述300人中按“年齡是否達到35歲”抽出一個容量為60人的樣本,再用分層抽樣的方法將“年齡達到35歲”的被抽個體數分配到“經常使用單車”和“偶爾使用單車”中去.求這60人中“年齡達到35歲且偶爾使用單車”的人數;
(2)從統(tǒng)計數據可直觀得出“是否經常使用共享單車與年齡(記作歲)有關”的結論.在用獨立性檢驗的方法說明該結論成立時,為使犯錯誤的概率盡可能小,年齡應取25還是35?請通過比較的觀測值的大小加以說明.
參考公式:,其中.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com