設(shè)函數(shù)()
(1)寫出函數(shù)的定義域;(2)討論函數(shù)的單調(diào)性.
(1)
(2)當(dāng)有兩個零點(diǎn),
且當(dāng)內(nèi)為增函數(shù);
當(dāng)內(nèi)為減函數(shù); 2
②當(dāng)內(nèi)為增函數(shù); 2
③當(dāng)內(nèi)為增函數(shù); 2
④當(dāng)在定義域內(nèi)有唯一零點(diǎn),當(dāng)內(nèi)為增函數(shù),當(dāng)時內(nèi)為減函數(shù)
解析試題分析:解:(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c2/1/ymbsi1.png" style="vertical-align:middle;" /> 2
(2)
當(dāng)的判別式,
①當(dāng)有兩個零點(diǎn),
且當(dāng)內(nèi)為增函數(shù);
當(dāng)內(nèi)為減函數(shù); 2
②當(dāng)內(nèi)為增函數(shù); 2
③當(dāng)內(nèi)為增函數(shù); 2
④當(dāng)
在定義域內(nèi)有唯一零點(diǎn),
當(dāng)內(nèi)為增函數(shù),當(dāng)時內(nèi)為減函數(shù)。2
考點(diǎn):導(dǎo)數(shù)的符號與函數(shù)單調(diào)性
點(diǎn)評:本試題主要是考查了分類討論思想來秋季誒函數(shù)的零點(diǎn),進(jìn)而得到單調(diào)性的判定,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于定義在實(shí)數(shù)集上的兩個函數(shù),若存在一次函數(shù)使得,對任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”。現(xiàn)已知(,為自然對數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時,函數(shù)是否存在過點(diǎn)的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)如果x∈[1,4],求函數(shù)h(x)=(f(x)+1)g(x)的值域;
(2)求函數(shù)M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)對x∈[2,4]有解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時,如果函數(shù)僅有一個零點(diǎn),求實(shí)數(shù)的取值范圍.
(2)當(dāng)時,比較與1的大小.
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在實(shí)數(shù)集上的函數(shù),,其導(dǎo)函數(shù)記為,
(1)設(shè)函數(shù),求的極大值與極小值;
(2)試求關(guān)于的方程在區(qū)間上的實(shí)數(shù)根的個數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù))是實(shí)數(shù)集上的奇函數(shù).
(1)求的值;
(2)試討論函數(shù)的零點(diǎn)的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com