【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.
【答案】解:(Ⅰ)證明:由正弦定理得:
即 ,
∴sinB+sinA+sinBcosA+cosBsinA=3sinC
∴sinB+sinA+sin(A+B)=3sinC
∴sinB+sinA+sinC=3sinC
∴sinB+sinA=2sinC
∴a+b=2c
∴a,c,b成等差數(shù)列.
(Ⅱ)
∴ab=8
c2=a2+b2﹣2abcosC
=a2+b2﹣ab
=(a+b)2﹣3ab
=4c2﹣24.
∴c2=8得
【解析】(Ⅰ)利用正弦定理以及兩角和與差的三角函數(shù),三角形的內(nèi)角和,化簡求解即可.(Ⅱ)利用三角形的面積以及余弦定理化簡求解即可.
【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確是 , (寫出所有正確命題的序號)
①若奇函數(shù)f(x)的周期為4,則函數(shù)f(x)的圖象關(guān)于(2,0)對稱;
②若a∈(0,1),則a1+a<a ;
③函數(shù)f(x)=ln 是奇函數(shù);
④存在唯一的實數(shù)a使f(x)=lg(ax+ )為奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在高中學習過程中,同學們經(jīng)常這樣說:“如果物理成績好,那么學習數(shù)學就沒什么問題.”某班針對“高中生物理學習對數(shù)學學習的影響”進行研究,得到了學生的物理成績與數(shù)學成績具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機抽取5名學生在一次考試中的物理和數(shù)學成績,如表:
成績/編號 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數(shù)學(y) | 130 | 125 | 110 | 95 | 90 |
(參考公式: = , = ﹣ )
參考數(shù)據(jù):902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學成績y關(guān)于物理成績x的線性回歸方程 = x+ ( 精確到0.1),若某位學生的物理成績?yōu)?0分,預測他的數(shù)學成績;
(2)要從抽取的這五位學生中隨機選出三位參加一項知識競賽,以X表示選中的學生的數(shù)學成績高于100分的人數(shù),求隨機變量X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)的表達式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項公式為an=f( )(n∈N),則此數(shù)列前2017項的和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(I)作出函數(shù)f(x)的圖象;
(Ⅱ)若不等式 ≤f(x)有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系的極點在直角坐標系的原點處,極軸與x軸非負半軸重合,直線l的參數(shù)方程為: (t為參數(shù)),曲線C的極坐標方程為:ρ=4cosθ.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)設(shè)直線l與曲線C相交于P,Q兩點,求|PQ|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知遞增數(shù)列{an},a1=2,其前n項和為Sn , 且滿足3(Sn+Sn﹣1)= +2(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 =n,求其前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中xOy中,已知曲線E經(jīng)過點P(1, ),其參數(shù)方程為 (α為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線E的極坐標方程;
(2)若直線l交E于點A、B,且OA⊥OB,求證: 為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次數(shù)學測試之后,數(shù)學組的老師對全校數(shù)學總成績分布在[105,135)的n名同學的19題成績進行了分析,數(shù)據(jù)整理如下:
組數(shù) | 分組 | 19題滿分人數(shù) | 19題滿分人數(shù)占本組人數(shù)比例 |
第一組 | [105,110] | 15 | 0.3 |
第二組 | [110,115) | 30 | 0.3 |
第三組 | [115,120) | x | 0.4 |
第四組 | [120,125) | 100 | 0.5 |
第五組 | [125,130) | 120 | 0.6 |
第六組 | [130,135) | 195 | y |
(Ⅰ)補全所給的頻率分布直方圖,并求n,x,y的值;
(Ⅱ)現(xiàn)從[110,115)、[115,120)兩個分數(shù)段的19題滿分的試卷中,按分層抽樣的方法抽取9份進行展出,并從9份試卷中選出兩份作為優(yōu)秀試卷,優(yōu)秀試卷在[115,120)中的分數(shù)記為ξ,求隨機變量ξ的分布列及期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com