【題目】下列命題正確的是( 。
A.“若x=3,則x2﹣2x﹣3=0”的否命題是:“若x=3,則x2﹣2x﹣3≠0”
B.在△ABC中,“A>B”是“sinA>sinB”的充要條件
C.若p∧q為假命題,則p∨q一定為假命題
D.“存在x0∈R,使得ex0≤0”的否定是:不存在x0∈R,使得e0”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,已知某10張獎(jiǎng)券中有6張有獎(jiǎng),其余4張沒有獎(jiǎng),且有獎(jiǎng)的6張獎(jiǎng)券每張均可獲得價(jià)值10元的獎(jiǎng)品.某顧客從此10張獎(jiǎng)券中任意抽取3張.
(1)求該顧客中獎(jiǎng)的概率;
(2)若約定抽取的3張獎(jiǎng)券都有獎(jiǎng)時(shí),還要另獎(jiǎng)價(jià)值6元的獎(jiǎng)品,求該顧客獲得的獎(jiǎng)品總價(jià)值(元)的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,直線不經(jīng)過橢圓上頂點(diǎn),與橢圓交于,不同兩點(diǎn).
(1)當(dāng),時(shí),求橢圓的離心率的取值范圍;
(2)若,直線與的斜率之和為,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖像上.
(1)證明:當(dāng)時(shí),;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè)為數(shù)列的前n項(xiàng)的積,若不等式對(duì)一切成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知位于軸左側(cè)的圓與軸相切于點(diǎn)且被軸分成的兩段圓弧長(zhǎng)之比為,直線與圓相交于,兩點(diǎn),且以為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn).
(1)求圓的方程;
(2)求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,腰長(zhǎng)為2,D、E分別是邊AB、BC的中點(diǎn),將△BDE沿DE翻折,得到四棱錐B﹣ADEC,且F為棱BC中點(diǎn),BA.
(1)求證:EF⊥平面BAC;
(2)在線段AD上是否存在一點(diǎn)Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的離心率,左、右焦點(diǎn)分別為,,過右焦點(diǎn)任作一條不垂直于坐標(biāo)軸的直線l與橢圓C交于A,B兩點(diǎn),的周長(zhǎng)為.
(1)求橢圓C的方程;
(2)記點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn),直線交x軸于點(diǎn)D.求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn),過的直線交橢圓于、兩點(diǎn),且是線段的中點(diǎn).
(1)求橢圓的離心率;
(2)已知是橢圓的左焦點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長(zhǎng);
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com