(2013•松江區(qū)二模)已知函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,設(shè)F(x)=x2•f(x),則F(x)是( 。
分析:由f(-x)=-f(x)可知f(x)為奇函數(shù),利用奇偶函數(shù)的概念即可判斷設(shè)F(x)=x2•f(x)的奇偶性,從而得到答案.
解答:解:∵f(-x)=
-1,x>0
0,x=0
1,x<0
=-
1,x>0
0,x=0
-1,x<0
=-f(x),
∴f(x)為奇函數(shù),
又F(x)=x2•f(x),
∴F(-x)=(-x)2•f(-x)=-x2•f(x)=-F(x),
∴F(x)是奇函數(shù),可排除C,D.
又F(x)=x2•f(x)=
x2,x>0
0,x=0
-x2,x<0
,
∴F(x)在(-∞,+∞)上單調(diào)遞增,可排除A,
故選B.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性與單調(diào)性,著重考查函數(shù)奇偶性的定義的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)若正整數(shù)n使得行列式
.
   1        n  
 2-n     3n 
.
=6
,則
P
n
7
=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知函數(shù)f(x)=x
13
,x∈(1,27)
的值域?yàn)锳,集合B={x|x2-2x<0,x∈R},則A∩B=
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知α∈(-
π
2
,0)
,且cosα=
4
5
,則sin2α=
-
24
25
-
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知圓錐的母線長(zhǎng)為5,側(cè)面積為15π,則此圓錐的體積為
12π
12π
(結(jié)果保留π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實(shí)數(shù))的一個(gè)根,則a+b=
19
19

查看答案和解析>>

同步練習(xí)冊(cè)答案