【題目】如圖所示,是半圓的直徑,垂直于半圓所在的平面,點是圓周上不同于的任意一點,分別為的中點,則下列結(jié)論正確的是(  )

A.B.平面平面

C.所成的角為45°D.平面

【答案】B

【解析】

對每一個選項逐一分析判斷得解.

A.,分別為,的中點,

,又所成的角為,故不正確;

,,不成立,故A不正確.

B. 的直徑,點是圓周上不同于,的任意一點,

,

垂直所在的平面,所在的平面,

,

,平面,

平面,平面平面,故B正確;

C. 的直徑,點是圓周上不同于,的任意一點,

,又、、、共面,不垂直,

平面不成立,故不正確;

,分別為,的中點,

,又,所成的角為,故不正確;

D. 的直徑,點是圓周上不同于,的任意一點,

,又、、、共面,不垂直,

平面不成立,故D不正確.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點,直線和曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著業(yè)的迅速發(fā)展計算機也在迅速更新?lián)Q代,平板電腦因使用和移動便捷以及時尚新潮性,而備受人們尤其是大學(xué)生的青睞,為了解大學(xué)生購買平板電腦進行學(xué)習(xí)的學(xué)習(xí)情況,某大學(xué)內(nèi)進行了一次匿名調(diào)查,共收到1500份有效問卷.調(diào)查結(jié)果顯示700名女學(xué)生中有300人,800名男生中有400人擁有平板電腦.

(Ⅰ)完成下列列聯(lián)表:

(Ⅱ)分析是否有的把握認為購買平板電腦與性別有關(guān)?

附:獨立性檢驗臨界值表:

(參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線(為參數(shù))與曲線相交于兩點.

(I)試寫出曲線的直角坐標方程和直線的普通方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為2的正方形,的中點,以為折痕把折起,使點到達點的位置,且.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結(jié)論:

從中任取3球,恰有一個白球的概率是;

從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;

從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為

其中所有正確結(jié)論的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中),若函數(shù)的圖象與軸的任意兩個相鄰交點間的距離為,且函數(shù)的圖象過點

1)求的解析式;

2)求的單調(diào)增區(qū)間:

3)求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人承攬一項業(yè)務(wù),需做文字標牌4個,繪畫標牌5個,現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標牌1個,繪畫標牌2個,乙種規(guī)格每張2m2,可做文字標牌2個,繪畫標牌1個,求兩種規(guī)格的原料各用多少張,才能使總的用料面積最?

查看答案和解析>>

同步練習(xí)冊答案