【題目】已知點(diǎn)E(﹣4,0)和F40),過(guò)點(diǎn)E的直線l與過(guò)點(diǎn)F的直線m相交于點(diǎn)M,設(shè)直線l的斜率為k1,直線m的斜率為k2,如果k1k2

1)記點(diǎn)M形成的軌跡為曲線C,求曲線C的軌跡方程.

2)已知P2,m)、Q2,﹣m)(m0)是曲線C上的兩點(diǎn),A,B是曲線C上位于直線PQ兩側(cè)的動(dòng)點(diǎn),當(dāng)A,B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

【答案】(1)x)(2)直線AB的斜率為定值,詳見(jiàn)解析

【解析】

(1)設(shè)點(diǎn),再利用k1k2求得關(guān)于的方程即可.

(2)由∠APQ=∠BPQ可知設(shè)直線PA的斜率為k,則PB的斜率為﹣k,再設(shè)直線PA的直線方程與橢圓聯(lián)立,求得的坐標(biāo),再同理求得的坐標(biāo),再表達(dá)直線AB的斜率進(jìn)行化簡(jiǎn)求解即可.

1)設(shè)所求動(dòng)點(diǎn)Ax,y),由,,得,

,∴,即x≠±4).

即點(diǎn)A的軌跡方程為x≠±4);

2)當(dāng)∠APQ=∠BPQ,則PA、PB的斜率之和為0,設(shè)直線PA的斜率為k,

PB的斜率為﹣k,

直線PA的直線方程為y3kx2),

,整理得(3+4k2x2+832kkx+432k2480,

,

同理直線PB的直線方程為y3=﹣kx2),

可得

,,

,

∴直線AB的斜率為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若關(guān)于的不等式上恒成立,求的取值范圍;

(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷上是否存在極值.若存在,判斷極值的正負(fù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次數(shù)學(xué)知識(shí)比賽中共有6個(gè)不同的題目,每位同學(xué)從中隨機(jī)抽取3個(gè)題目進(jìn)行作答,已知這6個(gè)題目中,甲只能正確作答其中的4個(gè),而乙正確作答每個(gè)題目的概率均為,且甲乙兩位同學(xué)對(duì)每個(gè)題目的作答都是相互獨(dú)立、互不影響的.

(1)求甲、乙兩位同學(xué)總共正確作答3個(gè)題目的概率;

(2)若甲、乙兩位同學(xué)答對(duì)題目個(gè)數(shù)分別是,由于甲所在班級(jí)少一名學(xué)生參賽,故甲答對(duì)一題得15分,乙答對(duì)一題得10分,求甲乙兩人得分之和的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面

(1)設(shè)的中點(diǎn),求證:平面;

(2)若與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是矩形,,,且.

(1)求證:平面平面;

(2)設(shè)的中點(diǎn),判斷并證明在線段上是否存在點(diǎn),使平面,若存在,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:

積極參加班級(jí)工作

不積極參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計(jì)

24

26

50

如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,求事件A:抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率;

若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動(dòng),請(qǐng)用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;

的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)與圓O相切的直線l交橢圓CA,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求△AOB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長(zhǎng)為的等邊三角形,中點(diǎn),且平面為線段上一動(dòng)點(diǎn),記

(1)當(dāng)時(shí),求異面直線所成角的余弦值;

(2)當(dāng)與平面所成角的正弦值為時(shí),求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案