分析 (1)根據(jù)導(dǎo)數(shù)的幾何意義可得f(0)=1,f′(0)=1,列方程組解出即可;
(2)結(jié)合(1)中的導(dǎo)數(shù)可求得y=$\frac{x-1}{{e}^{x}}$的原函數(shù),利用微積分基本定理計算定積分.
解答 解:(1)f′(x)=$\frac{k{e}^{x}-(kx+b){e}^{x}}{{e}^{2x}}$=$\frac{k-kx-b}{{e}^{x}}$.
∵f(x)在x=0處的切線方程為y=x+1,
∴$\left\{\begin{array}{l}{f(0)=1}\\{f′(0)=1}\end{array}\right.$,即$\left\{\begin{array}{l}{b=1}\\{k-b=1}\end{array}\right.$,
解得k=2,b=1.
(2)令$\frac{k-kx-b}{{e}^{x}}$=$\frac{x-1}{{e}^{x}}$得$\left\{\begin{array}{l}{-k=1}\\{k-b=-1}\end{array}\right.$,
解得k=-1,b=0,
∴($\frac{-x}{{e}^{x}}$)′=$\frac{x-1}{{e}^{x}}$,
∴$\int_0^1{\frac{x-1}{e^x}}{d_x}$=$\frac{-x}{{e}^{x}}$${|}_{0}^{1}$=-$\frac{1}{e}$.
點評 本題考查了導(dǎo)數(shù)的幾何意義,微積分基本定理,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}π}{8}$ | B. | $\frac{3\sqrt{3}π}{7}$ | C. | $\frac{3\sqrt{2}π}{8}$ | D. | $\frac{3\sqrt{2}π}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com