【題目】在平面直角坐標(biāo)系中,已知向量 ,定點 的坐標(biāo)為 ,點 滿足 ,曲線 ,區(qū)域 ,曲線 與區(qū)域 的交集為兩段分離的曲線,則( )
A.
B.
C.
D.

【答案】A
【解析】由平面向量數(shù)量積運算可得: ,則: ,

設(shè)N點坐標(biāo)為 ,考查曲線C:

整理可得N點的軌跡為: ,即N點是以A位圓心,1為半徑的圓,

由平面向量模的幾何意義可得P點是以M為圓心,r,R分別為半徑的圓環(huán),

數(shù)形結(jié)合,曲線 與區(qū)域 的交集為兩段分離的曲線,則 .

所以答案是:A.


【考點精析】解答此題的關(guān)鍵在于理解向量的幾何表示的相關(guān)知識,掌握帶有方向的線段叫做有向線段,有向線段包含三個要素:起點、方向、長度,以及對圓的參數(shù)方程的理解,了解圓的參數(shù)方程可表示為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R)
(1)當(dāng)a=4時,解不等式f(x)≥8;
(2)當(dāng)a∈[0,4]時,求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有3個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)相交于A(x1 , y1),B(x2 , y2)兩點,O為坐標(biāo)原點.
(1)求y1y2的值;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求| |;
(2)已知點D是AB上一點,滿足 ,點E是邊CB上一點,滿足 . ①當(dāng)λ= 時,求
②是否存在非零實數(shù)λ,使得 ?若存在,求出的λ值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數(shù)列,數(shù)列{bn}滿足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是各項均為正數(shù)的等比數(shù)列a1+a2=2( ),a3+a4+a5=64 + +
(1)求{an}的通項公式;
(2)設(shè)bn=(an+ 2 , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點 為圓心的圓與直線 相切,過點 的動直線與圓 相交于 兩點.
(1)求圓 的方程;
(2)當(dāng) 時,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點E落在邊BC上(即點P),則當(dāng)AD取最小值時,邊AF的長是;此時四面體F﹣ADP的外接球的半徑是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

同步練習(xí)冊答案