A. | 一定是銳角三角形 | B. | 可能是直角三角形 | ||
C. | 一定是鈍角三角形 | D. | 可能是鈍角三角形 |
分析 由已知的等式cn=an+bn,得到c為三角形的最大邊,利用不等式的性質及作差的方法判斷得到a2+b2>c2,然后利用余弦定理表示出cosC,由得到的a2+b2>c2,判斷出cosC大于0,即C為銳角,根據(jù)三角形邊角關系:大邊對大角,得到三角形三內角都為銳角,從而得到三角形為銳角三角形.
解答 解:∵cn=an+bn,
∴c>a,c>b,即c為最大邊,
∴cn-2>an-2,cn-2>bn-2,
即cn-2-an-2>0,cn-2-bn-2>0,
∴(a2+b2)cn-2-cn=(a2+b2)cn-2-an-bn=a2(cn-2-an-2)+b2(cn-2-bn-2)>0,
即(a2+b2)cn-2>cn,
∴a2+b2>c2,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$>0,
則△ABC一定是銳角三角形,
故選:A.
點評 此題考查了三角形形狀的判斷,涉及的知識有三角形的邊角關系,不等式的基本性質,余弦函數(shù)的圖象與性質以及余弦定理,其中利用作差法判斷出a2+b2>c2是解本題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com