【題目】某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個(gè)矩形的高科技工業(yè)園區(qū).已知,,,曲線段是以點(diǎn)為頂點(diǎn)且開口向上的拋物線的一段.如果要使矩形的相鄰兩邊分別落在、上,且一個(gè)頂點(diǎn)落在曲線段上,問應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到).

【答案】把工業(yè)園區(qū)規(guī)劃成長(zhǎng)、寬時(shí),矩形工業(yè)園區(qū)的用地面積最大,最大用地面積約為.

【解析】

本題首先可根據(jù)題意建立直角坐標(biāo)系,然后求出曲線段的方程為以及,再然后寫出工業(yè)園區(qū)的用地面積,最后利用導(dǎo)函數(shù)即可求出最大的用地面積.

為原點(diǎn),所在直線為軸建立直角坐標(biāo)系(如圖):

依題意可設(shè)拋物線的方程為,且,

,解得,曲線段的方程為,

設(shè),則,,

工業(yè)園區(qū)的用地面積,

,令,則,

解得,(舍去),

當(dāng)時(shí),,的增函數(shù);

當(dāng)時(shí),,的減函數(shù),

所以當(dāng)時(shí),取到最大值,

此時(shí),

故把工業(yè)園區(qū)規(guī)劃成長(zhǎng)、寬時(shí),矩形工業(yè)園區(qū)的用地面積最大,最大用地面積約為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點(diǎn).

(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.線性回歸直線必經(jīng)過點(diǎn)中心點(diǎn)

B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

C.若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1

D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年(天)內(nèi)天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)(記為)的關(guān)

系式為:

試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于元且不超過元的概率;

(2)若本次抽取的樣本數(shù)據(jù)有天是在供暖季,其中有天為重度污染,完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取了40輛汽車在經(jīng)過路段上某點(diǎn)時(shí)的車速(km/h),現(xiàn)將其分成六段: , , , , ,后得到如圖所示的頻率分布直方圖.

(Ⅰ)現(xiàn)有某汽車途經(jīng)該點(diǎn),則其速度低于80km/h的概率約是多少?

(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車經(jīng)過該點(diǎn)的平均速度約是多少?

(Ⅲ)在抽取的40輛且速度在(km/h)內(nèi)的汽車中任取2輛,求這2輛車車速都在(km/h)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有奇數(shù)條線段,甲乙兩人做如下游戲:兩人輪流(甲先乙后)給任一條尚未設(shè)定方向的線段設(shè)定一個(gè)方向,直至某次(甲)設(shè)定后,所有線段各有了一個(gè)方向?yàn)橹?如果最后得到的所有向量之和的模長(zhǎng)不小于原來每條線段長(zhǎng),則甲獲勝,否則乙獲勝.問:誰有必勝策略?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)滿足,且當(dāng)時(shí),,關(guān)于的不等式上有且只有個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩支圍棋隊(duì)各5名隊(duì)員按事先排好的順序進(jìn)行擂臺(tái)賽,雙方1號(hào)隊(duì)員先賽,負(fù)者被淘汰;然后負(fù)方的2號(hào)隊(duì)員再與對(duì)方的勝者比賽,負(fù)者又被淘汰依次類推,直到有一方隊(duì)員全部被淘汰,則宣布另一方獲勝假設(shè)每名隊(duì)員的實(shí)力相當(dāng),則比賽結(jié)束時(shí)甲隊(duì)未上場(chǎng)隊(duì)員數(shù)的數(shù)學(xué)期望______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)有400名學(xué)生參加某項(xiàng)體育測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:

1)若該樣本中男生有55人,試估計(jì)該學(xué)校高三年級(jí)女生總?cè)藬?shù);

2)若規(guī)定小于60分為“不及格”,從該學(xué)校高三年級(jí)學(xué)生中隨機(jī)抽取一人,估計(jì)該學(xué)生不及格的概率;

3)若規(guī)定分?jǐn)?shù)在為“良好”,為“優(yōu)秀”.用頻率估計(jì)概率,從該校高三年級(jí)隨機(jī)抽取三人,記該項(xiàng)測(cè)試分?jǐn)?shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案