雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩條漸近線將平面劃分為“上、下、左、右”四個區(qū)域(不含邊界),若點(diǎn)(1,2)在“上”區(qū)域內(nèi),則雙曲線離心率e的取值范圍是
 
分析:由于雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線方程為:y=
b
a
x
,及點(diǎn)(1,2)在“上”區(qū)域內(nèi),得出
b
a
< 2
,從而得出雙曲線離心率e的取值范圍.
解答:解:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線方程為:
y=
b
a
x
,
∵點(diǎn)(1,2)在“上”區(qū)域內(nèi),
b
a
× 1<2
,即
b
a
< 2
,
e=
c
a
1+ (
b
a
) 2
 <
1+22
=
5

又e>1,
則雙曲線離心率e的取值范圍是(1,
5
)

故答案為:(1,
5
)
點(diǎn)評:本小題主要考查雙曲線的簡單性質(zhì)、不等式(組)與平面區(qū)域、不等式的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O和點(diǎn)F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則
OP
FP
的取值范圍為( 。
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準(zhǔn)線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點(diǎn),且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O和點(diǎn)F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的一點(diǎn),并且P點(diǎn)與右焦點(diǎn)F′的連線垂直x軸,則線段OP的長為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個焦點(diǎn)坐標(biāo)為(-
3
,0)
,則其漸近線方程為( 。
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習(xí)冊答案