精英家教網 > 高中數學 > 題目詳情
已知圓C:x2+(y-3)2=4,過A(-1,0)的直線l與圓C相交于P,Q兩點,若|PQ|=2,則直線l的方程為(  )
A.x=-1或4x+3y-4=0
B.x=-1或4x-3y+4=0
C.x=1或4x-3y+4=0
D.x=1或4x+3y-4=0
B
當直線l與x軸垂直時,易知x=-1符合題意;當直線l與x軸不垂直時,設直線l的方程為y=k(x+1),過圓C作CM⊥PQ,垂足為M,由于|PQ|=2,可求得|CM|=1.由|CM|==1,解得k=,此時直線l的方程為y= (x+1).故所求直線l的方程為x=-1或4x-3y+4=0.故選B.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知點A(1,5),B(-2,10),直線l:y=x+1,在直線l上找一點P使得|PA|+|PB|最小,則這個最小值為( 。
A.
34
B.8C.9D.10

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線l:y=x-1被圓(x-3)2+y2=4截得的弦長為     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若直線ax+by=1過點M(cos α,sin α),則(  )
A.a2+b2≥1B.a2+b2≤1
C.≤1D.≥1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|=,求直線l的傾斜角;
(2)若點P(1,1)滿足2,求此時直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動點P作圓C的一條切線,設切點為T,求|PT|的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設點,若在圓上存在點,使得,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖所示,AD,AE,BC分別與圓O切于點D,E,F(xiàn),延長AF與圓O交于另一點G.給出下列三個結論:

①AD+AE=AB+BC+CA;
②AF·AG=AD·AE;
③△AFB∽△ADG.
其中正確結論的序號是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知P是直線3+4+8=0上的動點,PA、PB是圓=0的兩切線,A、B是切點,C是圓心,那么四邊形PACB面積的最小值為      .

查看答案和解析>>

同步練習冊答案