8.設(shè)F1,F(xiàn)2為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左,右焦點(diǎn),P,Q為雙曲線C右支上的兩點(diǎn),若$\overrightarrow{P{F_2}}$=2$\overrightarrow{{F_2}Q}$,且$\overrightarrow{{F_1}Q}$•$\overrightarrow{PQ}$=0,則該雙曲線的離心率是( 。
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

分析 根據(jù)$\overrightarrow{P{F_2}}$=2$\overrightarrow{{F_2}Q}$,且$\overrightarrow{{F_1}Q}$•$\overrightarrow{PQ}$=0,結(jié)合直角三角形的性質(zhì),建立三角形的邊角關(guān)系,利用雙曲線的定義得到關(guān)于a,c的方程進(jìn)行求解即可.

解答 解:∵若$\overrightarrow{P{F_2}}$=2$\overrightarrow{{F_2}Q}$,
∴|$\overrightarrow{P{F_2}}$|=2|$\overrightarrow{{F_2}Q}$|,
∵$\overrightarrow{{F_1}Q}$•$\overrightarrow{PQ}$=0,∴$\overrightarrow{{F_1}Q}$⊥$\overrightarrow{PQ}$,
即∠F1QF2為直角,
則設(shè)|$\overrightarrow{P{F_2}}$|=2m,|$\overrightarrow{{F_2}Q}$|=m,
則|F1F2|=2c,
則|F1Q|=$\sqrt{4{c}^{2}-{m}^{2}}$,|F1P|=$\sqrt{4{c}^{2}-{m}^{2}+9{m}^{2}}$=$\sqrt{4{c}^{2}+8{m}^{2}}$,
則|F1Q|-|F2Q|=$\sqrt{4{c}^{2}-{m}^{2}}$-m=2a,①
|F1P|-|F2P|$\sqrt{4{c}^{2}+8{m}^{2}}$-2m=2a,②,
則$\sqrt{4{c}^{2}-{m}^{2}}$-m=$\sqrt{4{c}^{2}+8{m}^{2}}$-2m,
即$\sqrt{4{c}^{2}-{m}^{2}}$+m=$\sqrt{4{c}^{2}+8{m}^{2}}$,
平方整理得17m2=4c2
則m2=$\frac{4{c}^{2}}{17}$,m=$\frac{2c}{\sqrt{17}}$,代回①得$\sqrt{4{c}^{2}-\frac{4{c}^{2}}{17}}$-$\frac{2c}{\sqrt{17}}$=2a,
即$\frac{8c}{\sqrt{17}}$-$\frac{2c}{\sqrt{17}}$=$\frac{6c}{\sqrt{17}}$=2a,
即離心率e=$\frac{c}{a}$=$\frac{{\sqrt{17}}}{3}$,
故選:B

點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)直角三角形的邊角關(guān)系建立方程組,求出a,c的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),運(yùn)算量較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,己知a1═1,Sn+1=2Sn+n+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.對(duì)某產(chǎn)品1至6月份銷售量及其價(jià)格進(jìn)行調(diào)查,其售價(jià)x和銷售量y之間的一組數(shù)據(jù)如表所示:
月份i123456
單價(jià)xi(元)99.51010.5118
銷售量yi(件)111086514
(1)根據(jù)1至5月份的數(shù)據(jù),求解y關(guān)于x的回歸直線方程;
(2)若有回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸方程是理想的,試問(wèn)所得回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在平面直角坐標(biāo)系xOy中,點(diǎn)P為雙曲線x2-2y2=1的右支上的一個(gè)動(dòng)點(diǎn),若點(diǎn)P到直線$\sqrt{2}$x-2y+2=0的距離大于t恒成立,則實(shí)數(shù)t的最大值為( 。
A.2B.$\frac{{\sqrt{3}}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.將3個(gè)教師分到6個(gè)班級(jí)任教,每個(gè)教師教2個(gè)班的不同分法有90種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線C1:$\frac{x^2}{3}$-$\frac{{16{y^2}}}{p^2}$=1的左焦點(diǎn)在拋物線C2:y2=2px(p>0)的準(zhǔn)線上,則雙曲線C1的離心率為(  )
A.$\frac{4}{3}$B.$\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x、y的取值如表所示,如果y與x呈線性相關(guān),且線性回歸方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\frac{13}{2}$,則b=( 。
x234
y645
A.$\frac{1}{3}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一個(gè)正四棱錐和一個(gè)正方體,它們有半徑相同的內(nèi)切球,記正四棱錐的體積為V1,正方體的體積為V2,且V1=kV2,則實(shí)數(shù)k的最小值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知命題p:x2-2x+a≥0在R上恒成立,命題q:?x0∈R,x02+2ax0+2-a=0,若p或q為真,¬p為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案