分析 (1)由條件求得a2=3,當(dāng)n≥2時,將n換為n-1,兩式相減可得an+1=2an+1,兩邊加1,由等比數(shù)列的通項公式即可得到所求通項;
(2)bn=$\frac{(\;\;\;\;)}{(\;\;\;\;)}$n•($\frac{1}{2}$)n,運用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得到所求和.
解答 解:(1)由a1=1,Sn+1=2Sn+n+1①,可得
S2=2S1+2,即a1+a2=2a1+2,解得a2=3,
當(dāng)n≥2時,Sn=2Sn-1+n②,
①-②,可得an+1=2an+1,
即有an+1+1=2(an+1),
可得an+1=(a2+1)•2n-2=2n,對n=1也成立,
則數(shù)列{an}的通項公式為an=2n-1(n∈N*);
(2)bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$=$\frac{n}{{2}^{n+1}-1-({2}^{n}-1)}$=$\frac{(\;\;\;\;)}{(\;\;\;\;)}$n•($\frac{1}{2}$)n,
Tn=1•($\frac{1}{2}$)1+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n,
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+3•($\frac{1}{2}$)4+…+n•($\frac{1}{2}$)n+1,
兩式相減可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1,
化簡可得Tn=2-$\frac{n+2}{{2}^{n}}$.
點評 本題考查數(shù)列的通項公式的求法,注意運用數(shù)列的通項與前n項和的關(guān)系,考查等比數(shù)列的通項公式和求和公式的運用,以及數(shù)列的求和方法:錯位相減法,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$+π2 | B. | π+π2 | C. | $\frac{π}{2}$+$\frac{{π}^{2}}{2}$ | D. | π+$\frac{{π}^{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最小值-e | B. | 有最小值e | C. | 有最大值e | D. | 有最大值e+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=0或3x-y-3=0 | B. | y=0或27x-4y-27=0 | ||
C. | y=0或x=1 | D. | x=1或3x-y-3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{3}$ | B. | $\frac{{\sqrt{17}}}{3}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com