已知ABC的頂點(diǎn)A(-5,0), B(5,0),頂點(diǎn)C在雙曲線=1上,則的值為                 。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



(2)設(shè)是定點(diǎn),其中滿足.過的兩條切線,切點(diǎn)分別為,分別交于.線段上異于兩端點(diǎn)的點(diǎn)集記為.證明:;
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓=1(a>b>0)與雙曲線=1有相同的焦點(diǎn),則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若曲線C上的點(diǎn)到直線的距離比它到點(diǎn)F的距離大1,
(1)求曲線C的方程。
(2)過點(diǎn)F(1,0)作傾斜角為的直線交曲線C于A、B兩點(diǎn),求AB的長(zhǎng)
(3)過點(diǎn)F(1,0)作斜率為k 的直線交曲線C于M、N 兩點(diǎn),求證:
 為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
給定橢圓,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在拋物線上有一點(diǎn),它到焦點(diǎn)的距離是20,則點(diǎn)的坐標(biāo)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件:
①焦點(diǎn)在y軸上、诮裹c(diǎn)在x軸上、蹝佄锞上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6、軖佄锞的通徑的長(zhǎng)為5
⑤由原點(diǎn)向過焦點(diǎn)的某條直線作垂線,垂足坐標(biāo)為(2,1)
能使這個(gè)拋物線方程為y2=10x的條件是________.(要求填寫合適條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(diǎn)(1,0)的直線與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為的橢圓C相交于A、B兩點(diǎn),直線y=x過線段AB的中點(diǎn),同時(shí)橢圓C上存在一點(diǎn)與其右焦點(diǎn)關(guān)于直線l對(duì)稱,試求直線l與橢圓C的方程  

查看答案和解析>>

同步練習(xí)冊(cè)答案