【題目】已知函數(shù),
(1)若函數(shù)有個零點,求的取值范圍;
(2)若有兩個極值點,且,求證:
【答案】(1);(2)見解析
【解析】
(1)將問題轉(zhuǎn)變?yōu)?/span>,與有兩個交點,利用導數(shù)得到圖象,利用圖象可求得結(jié)果;(2)根據(jù)有兩個極值點,通過導函數(shù)圖象構(gòu)造不等式組,可求得的范圍;再根據(jù)為的較大根,可求得且知;綜合范圍可求得的范圍;構(gòu)造函數(shù),,則只需證即可證得結(jié)論;利用導數(shù)研究函數(shù)的單調(diào)性,求得時,的范圍即可證得結(jié)論.
(1)令,故
若,函數(shù)無零點,不合題意
則
令,
則
當時,,
當時,,
作出函數(shù)的圖像如圖所示:
則時,與有兩個交點
即時,有個零點
即的取值范圍為
(2)由題意得:,
則
令
有兩個極值點 ,解得:
則是方程的兩根 ,
且
令,
則,
, ,使得
故當時,;當時,
即在上單調(diào)遞減;在上單調(diào)遞增
又,
當時,
函數(shù)在上單調(diào)遞增
即
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓,是長軸的一個端點,弦過橢圓的中心,且.
(1)求橢圓的方程.
(2)過橢圓右焦點的直線,交橢圓于兩點,交直線于點,判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某蔬菜批發(fā)商分別在甲、乙兩市場銷售某種蔬菜(兩個市場的銷售互不影響),己知該蔬菜每售出1噸獲利500元,未售出的蔬菜低價處理,每噸虧損100 元.現(xiàn)統(tǒng)計甲、乙兩市場以往100個銷售周期該蔬菜的市場需求量的頻數(shù)分布,如下表:
以市場需求量的頻率代替需求量的概率.設批發(fā)商在下個銷售周期購進噸該蔬菜,在 甲、乙兩市場同時銷售,以(單位:噸)表示下個銷售周期兩市場的需求量,(單位:元)表示下個銷售周期兩市場的銷售總利潤.
(Ⅰ)當時,求與的函數(shù)解析式,并估計銷售利潤不少于8900元的槪率;
(Ⅱ)以銷售利潤的期望為決策依據(jù),判斷與應選用哪—個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面真角坐標系xOy中,曲線的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立根坐標系.曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線與曲線交于M,N兩點,直線OM和ON的斜率分別為和,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點,若點在橢圓C上,則點稱為點M的一個“橢點”.
(1)求橢圓C的標準方程;
(2)若直線與橢圓C相交于A,B兩點,且A,B兩點的“橢點”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標原點,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右頂點分別為,,圓上有一動點,在軸上方,點,直線交橢圓于點,連接,.
(1)若,求的面積;
(2)設直線,的斜率存在且分別為,,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是橢圓上的點,是焦點,離心率.
(1)求橢圓的標準方程;
(2)設是橢圓上的兩點,且,問線段的垂直平分線是否過定點?若過定點,求出此定點的坐標,若不過定點,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線的焦點作直線交拋物線于兩點,已知點,為坐標原點.若的最小值為3.
(1)求拋物線的方程;
(2)過點作直線,交拋物線于兩點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com