9.已知點M,N分別在曲線C1:(x-$\frac{1}{2}$)2+(y-2)2=1和曲線C2:y2=x上運動,那么|MN|的最小值是$\frac{1}{4}$.

分析 |MN|的最小值,轉(zhuǎn)化為圓心與拋物線上的點的最小值即可.

解答 解:曲線C1:(x-$\frac{1}{2}$)2+(y-2)2=1的圓心為C($\frac{1}{2}$,2),半徑為1,
設拋物線上的點為N(x,y),則NC=$\sqrt{(x-\frac{1}{2})^{2}+(y-2)^{2}}$=$\sqrt{{y}^{4}-4y+\frac{17}{4}}$,
設f(y)=${y}^{4}-4y+\frac{17}{4}$,則f′(y)=4y3-4,
函數(shù)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴y=1時,函數(shù)f(y)取得最小值$\frac{5}{4}$,
∴|MN|的最小值是$\frac{5}{4}$-1=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查圓與拋物線的位置關系,考查學生的計算能力,正確轉(zhuǎn)化是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知拋物線C:y2=2px(p>0)的焦點F和橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點重合,直線l過點F交拋物線于A,B兩點.
(Ⅰ)若直線l的傾斜角為135°,求|AB|的長;
(Ⅱ)若直線l交y軸于點M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,試求m+n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段圖象經(jīng)過點(0,$\sqrt{3}$)和($\frac{2π}{9}$,0),則f($\frac{π}{2}$)的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設復數(shù)z滿足z=$\frac{2}{i-1}$,則z=( 。
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+a|+|x-2|.
(Ⅰ)當a=3時,求不等式f(x)≥7的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[0,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,A=$\frac{π}{3}$,BC=3,則AB+AC的長可表示為(  )
A.4$\sqrt{3}$sin(B+$\frac{π}{3}$)B.6sin(B+$\frac{π}{3}$)C.4$\sqrt{3}$sin(B+$\frac{π}{6}$)D.6sin(B+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.等比數(shù)列 {an}的前n項和為Sn,且a3=2S2+1,a4=2S3+1,則公比q為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.甲、乙、丙三人一起玩“黑白配”游戲:甲、乙、丙三人每次都隨機出“手心(白)”、“手背(黑)”中的某一個手勢,當其中一個人出示的手勢與另外兩人都不一樣時,這個人勝出;其他情況,不分勝負.則一次游戲中甲勝出的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點A(0,1),離心率e=$\frac{\sqrt{6}}{3}$,圓C:x2+y2=4,從圓C上任意一點P向橢圓T引兩條切線PM、PM.
(1)求橢圓T的方程;
(2)求證:PM⊥PN.

查看答案和解析>>

同步練習冊答案