【題目】甲、乙兩隊(duì)進(jìn)行防溺水專題知識(shí)競賽,每隊(duì)3人,首輪比賽每人一道必答題,答對者則為本隊(duì)得1分,答錯(cuò)或不答得0分,己知甲隊(duì)每人答對的概率分別為,,,乙隊(duì)每人答對的概率均為.設(shè)每人回答正確與否互不影響,用表示首輪比賽結(jié)束后甲隊(duì)的總得分.

1)求隨機(jī)變量的分布列;

2)求在首輪比賽結(jié)束后甲隊(duì)和乙隊(duì)得分之和為2的條件下,甲隊(duì)比乙隊(duì)得分高的概率.

【答案】1)分布列見解析;(2

【解析】

1的所有可能取值為0、1、2、3,求出對應(yīng)的概率即可;

2)先求出甲、乙兩隊(duì)得分之和為2分的概率,再通過條件概率的計(jì)算公式求出甲隊(duì)比乙隊(duì)得分高的概率.

1的所有可能取值為0、1、2、3,

,

,

的分布列為

0

1

2

3

P

2)記事件A表示甲、乙兩隊(duì)得分之和為2,事件B表示甲隊(duì)比乙隊(duì)得分高,

,

,

所以,

所以,在首輪比賽結(jié)束后甲隊(duì)和乙隊(duì)得分之和為2的條件下,甲隊(duì)比乙隊(duì)得分高的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個(gè)頂點(diǎn)為拋物線的頂點(diǎn), , 兩點(diǎn)都在拋物線上,且.

(1)求證:直線必過一定點(diǎn);

(2)求證: 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),對于任意,,總有.若對于任意,存在,使成立,則實(shí)數(shù)的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,PAPDAD,E,F分別為PC,BD的中點(diǎn).

求證:(1)EF∥平面PAD;

(2)PA⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某音樂院校舉行“校園之星”評選活動(dòng),評委由本校全體學(xué)生組成,對兩位選手,隨機(jī)調(diào)查了個(gè)學(xué)生的評分,得到下面的莖葉圖:

通過莖葉圖比較兩位選手所得分?jǐn)?shù)的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);

校方將會(huì)根據(jù)評分記過對參賽選手進(jìn)行三向分流:

所得分?jǐn)?shù)

低于

分到

不低于

分流方向

淘汰出局

復(fù)賽待選

直接晉級

記事件獲得的分流等級高于”,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019531日晚,大連市某重點(diǎn)高中舉行一年一度的畢業(yè)季燈光表演.學(xué)生會(huì)共安排6名高一學(xué)生到學(xué)校會(huì)議室遮擋4個(gè)窗戶,要求兩端兩個(gè)窗戶各安排1名學(xué)生,中間兩個(gè)窗戶各安排兩名學(xué)生,不同的安排方案共有(

A.720B.360C.270D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩個(gè)學(xué)校高三年級分別有1100人,1000人,為了了解兩個(gè)學(xué)校全體高三年級學(xué)生在該地區(qū)一?荚嚨臄(shù)學(xué)成績情況,采用分層抽樣方法從兩個(gè)學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如下:

1)計(jì)算,的值;

2)若規(guī)定考試成績在為優(yōu)秀,請根據(jù)樣本估計(jì)乙校數(shù)學(xué)成績的優(yōu)秀率;

3)若規(guī)定考試成績在內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,若按是否優(yōu)秀來判斷,是否有的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績有差異.

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的曲線標(biāo)準(zhǔn)方程.

1)虛軸長為,離心率為的雙曲線的標(biāo)準(zhǔn)方程;

2)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案