分析:(Ⅰ)設(shè)出數(shù)列{a
n}的公差,由已知條件列式求出公差,則數(shù)列{a
n}的通項(xiàng)公式可求;
(Ⅱ)把數(shù)列{a
n}的通項(xiàng)公式代入b
n=
,整理后利用裂項(xiàng)相消法求數(shù)列{b
n}的前n項(xiàng)和S
n.
解答:解:(Ⅰ)設(shè)數(shù)列{a
n}的公差為d,由a
1=2和a
2,a
3,a
4+1成等比數(shù)列,得
(2+2d)
2-(2+d)(3+3d),解得d=2,或d=-1,
當(dāng)d=-1時(shí),a
3=0,與a
2,a
3,a
4+1成等比數(shù)列矛盾,舍去.
∴d=2,
∴a
n=a
1+(n-1)d=2+2(n-1)=2n.
即數(shù)列{a
n}的通項(xiàng)公式a
n=2n;
(Ⅱ)由a
n=2n,得
b
n=
=
==-,
∴S
n=b
1+b
2+b
3+…+b
n=
1-+-+-+…+-=
.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式,考查了裂項(xiàng)相消法求數(shù)列的和,解答此題的關(guān)鍵是對(duì)數(shù)列{bn}的通項(xiàng)進(jìn)行裂項(xiàng),是中檔題.