13.如圖所示,在空間直角坐標系中,有一棱長為a的正方體ABCO-A′B′C′D′,A′C的中點E與AB的中點F的距離為$\frac{{\sqrt{2}}}{2}a$.

分析 由在空間直角坐標系中,有一棱長為a的正方體ABCO-A′B′C′D′,A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0,a),A′C的中點E與AB的中點F,知F(a,$\frac{a}{2}$,0),E( $\frac{a}{2}$,$\frac{a}{2}$,$\frac{a}{2}$),利用兩點間距離公式能求出A′C的中點E與AB的中點F的距離.

解答 解:如圖所示,在空間直角坐標系中,有一棱長為a的正方體ABCO-A′B′C′D′,
∵A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0,a),
A′C的中點E與AB的中點F,
∴F(a,$\frac{a}{2}$,0),E( $\frac{a}{2}$,$\frac{a}{2}$,$\frac{a}{2}$),|EF|=$\sqrt{(a-\frac{a}{2})^{2}+(\frac{a}{2}-\frac{a}{2})^{2}+(0-\frac{a}{2})^{2}}$=$\frac{{\sqrt{2}}}{2}a$.
故答案是:$\frac{{\sqrt{2}}}{2}a$.

點評 本題考查空間中兩點間距離公式的應用,解題時要認真審題,仔細解答,注意等價轉化思想的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.設集合$A=\{x|{2}^{{x}^{2}}<{2}^{2x+3}\}$,B={x|(x-2)(x-4)<0};求A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知集合A={x||x-a|≤3,x∈R},B={x|x2-3x-4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,角A.B、C的對邊分別為a,b,c,若2a=3b,則$\frac{9si{n}^{2}B-si{n}^{2}A}{si{n}^{2}A}$=( 。
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為m的正方形,PD⊥底面ABCD,且PD=m,PA=PC=$\sqrt{2}$m,若在這個四棱錐內放一個球,則此球的最大半徑是( 。
A.$\frac{1}{3}$(2-$\sqrt{2}$)mB.$\frac{1}{2}$(2+$\sqrt{2}$)mC.$\frac{1}{2}$(2-$\sqrt{2}$)mD.$\frac{1}{6}$(2+$\sqrt{2}$)m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且PA⊥底面ABCD,BD⊥PC,E是PA的中點,∠BAD=120°.
(1)求證:平面PAC⊥平面BDE;
(2)若PA=AB=2,求點P到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果復數(shù)z=a+2i滿足條件$|z|<\sqrt{5}$,那么實數(shù)a的取值范圍是(  )
A.$(-2\sqrt{2},2\sqrt{2})$B.(-2,2)C.(-1,1)D.$(-\sqrt{3},\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某冷飲店只出售一種飲品,該飲品每一杯的成本價為3元,售價為8元,每天售出的第20杯及之后的飲品半價出售.該店統(tǒng)計了近10天的飲品銷量,如圖所示:
設x為每天飲品的銷量,y為該店每天的利潤.
(1)求y關于x的表達式;
(2)從日利潤不少于96元的幾天里任選2天,求選出的這2天日利潤都是97元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.(Ⅰ)求612,840的最大公約數(shù);
(Ⅱ)已知f(x)=3x6+5x5+6x4+79x3-8x2+35x+12,用秦九韶算法計算:當x=-4時v3的值.

查看答案和解析>>

同步練習冊答案