A. | $\frac{1}{3}$(2-$\sqrt{2}$)m | B. | $\frac{1}{2}$(2+$\sqrt{2}$)m | C. | $\frac{1}{2}$(2-$\sqrt{2}$)m | D. | $\frac{1}{6}$(2+$\sqrt{2}$)m |
分析 此球內(nèi)切于四棱錐時(shí),半徑最大,設(shè)該四棱錐的內(nèi)切球的球心為O,半徑為r,連接OA,OB,OC,OD,OP,則VP-ABCD=VO-ABCD+VO-PAD+VO-PAB+VO-PBC+VO-PCD,由此能求出此球的最大半徑.
解答 解:由題知,此球內(nèi)切于四棱錐時(shí),半徑最大,
設(shè)該四棱錐的內(nèi)切球的球心為O,半徑為r,
連接OA,OB,OC,OD,OP,
則VP-ABCD=VO-ABCD+VO-PAD+VO-PAB+VO-PBC+VO-PCD,
即$\frac{1}{3}$×m2×m=$\frac{1}{3}$×m2×r+$\frac{1}{3}$×$\frac{1}{2}$×m2×r+$\frac{1}{3}$×$\frac{1}{2}$×$\sqrt{2}$m2×r+$\frac{1}{3}$×$\frac{1}{2}$×$\sqrt{2}$m2×r+$\frac{1}{3}$×$\frac{1}{2}$×m2×r,
解得r=$\frac{1}{2}$(2-$\sqrt{2}$)m,
所以此球的最大半徑是$\frac{1}{2}$(2-$\sqrt{2}$)m.
故選:C.
點(diǎn)評(píng) 本題考查球的最大半徑的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3] | B. | [3,+∞) | C. | (-∞,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com