分析 (1)結(jié)合線面垂直的判定定理可得BD⊥平面PAC,再由面面垂直的判定定理,即可得到平面PAC⊥平面BDE,
(2)先求出△ABD的面積,再求出△EBD的面積,根據(jù)體積公式計(jì)算即可.
解答 解:(1)因?yàn)镻A⊥平面ABCD,所以PA⊥BD.
又BD⊥PC,所以BD⊥平面PAC,
因?yàn)锽D?平面EBD,所以平面PAC⊥平面EBD.
(2)由(1)可知,BD⊥AC,所以ABCD是菱形,∠BAD=120°.
所以${S_{△ABD}}=\frac{1}{2}BD•\frac{1}{2}AC=\sqrt{3}$.
設(shè)AC∩BD=O,連結(jié)OE,則(1)可知,BD⊥OE.
所以${S_{△EBD}}=\frac{1}{2}BD•OE=\sqrt{6}$.
設(shè)三棱錐P-EBD的高為h,則$\frac{1}{3}{S_{△EBD}}•h=\frac{1}{3}{S_{△ABD}}•AE$,
即$\frac{1}{3}×\sqrt{6}×h=\frac{1}{3}×\sqrt{3}×1$,
解得$h=\frac{{\sqrt{2}}}{2}$.
點(diǎn)評(píng) 本題考查面面垂直的證明,考查三棱錐的體積的求法,解題時(shí)要注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $C_7^5×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$ | B. | $C_7^5×{({\frac{1}{3}})^2}×{({\frac{1}{3}})^5}$ | C. | $C_7^3×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$ | D. | $C_7^2×{({\frac{2}{3}})^2}×{({\frac{1}{3}})^5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com