4.某學(xué)校擬在廣場上建造一個矩形花園,如圖所示,中間是完全相同的兩個橢圓型花壇,每個橢圓型花壇的面積均為216π平方米,兩個橢圓花壇的距離是1.5米.整個矩形花壇的占地面積為S.
(注意:橢圓面積為πab,其中a,b分別為橢圓的長短半軸長)
(1)根據(jù)圖中所給數(shù)據(jù),試用a、b表示S;
(2)當(dāng)橢圓形花壇的長軸長為多少米時,所建矩形花園占地最少?并求出最小面積.

分析 (1)根據(jù)圖中所給數(shù)據(jù),由題意得,S=(2a+6)(4b+$\frac{9}{2}$);
(2)利用πab=216π,可得ab=216,再利用基本不等式即可得出結(jié)論.

解答 解:(1)由題意得,S=(2a+6)(4b+$\frac{9}{2}$)=8ab+9a+24b+27…(5分)
(2)∵πab=216π,∴ab=216
∴S=8ab+9a+24b+27≥8×216+27+2$\sqrt{9a•24b}$=2187
當(dāng)且僅當(dāng)9a=24b,即a=24時,取“=”,此時2a=48 …(12分)
答:當(dāng)橢圓形花壇的長軸為48米時,所建矩形花園占地最少,占地面積為2187平方米..…..(13分)

點(diǎn)評 本題主要考查函數(shù)在實(shí)際生活中的應(yīng)用以及利用二元不等式求最值的方法,解決實(shí)際問題通常有四個步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號,建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z=(2m2-3m-2)+(m2-3m+2)i.
(Ⅰ)當(dāng)實(shí)數(shù)m取什么值時,復(fù)數(shù)z是純虛數(shù);
(Ⅱ)當(dāng)m=0時,化簡$\frac{{z}^{2}}{z+5+2i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax+a的零點(diǎn)為x0,曲線f(x)在點(diǎn)(x0,f(x0))處的切線為y=g(x).
(1)證明:f(x)≤g(x);
(2)若關(guān)于x的方程f(x)=a有兩個不等實(shí)根m,n,p為f(x)較大的零點(diǎn),證明:|m-n|<p-$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在底面直徑為4的圓柱形容器中,放入一個半徑為1的冰球,當(dāng)冰球全部融化后,容器中液面的高度為0.3(相同體積的冰與水的質(zhì)量比為9:10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{9}=1$的一條漸近線方程為3x-2y=0.F1、F2分別是雙曲線的左、右焦點(diǎn),過點(diǎn)F2的直線與雙曲線右支交于A,B兩點(diǎn).若|AB|=10,則△F1AB的周長為(  )
A.18B.26C.28D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y-6≤0}\\{2x+y-3≥0}\end{array}\right.$,目標(biāo)函數(shù)z=ax-y僅在(0,3)取得最大值,則a的取值范圍是(  )
A.($\frac{1}{2}$,+∞)B.(-2,-$\frac{1}{2}$)C.(-∞,-$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(a-2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中正確的是(  )
A.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
B.有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐
C.由五個面圍成的多面體一定是四棱錐
D.棱臺各側(cè)棱的延長線交于一點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,{\;}^{\;}x≤0\\{x^{\frac{1}{2}}},{\;}^{\;}{\;}^{\;}x>0\end{array}$如果f(x0)>1,則x0的取值范圍是( 。
A.(-1,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

同步練習(xí)冊答案