滿足tan(x+
π
3
)≥-
3
的x的集合是
 
考點:正切函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:有正切函數(shù)的圖象和性質(zhì)即可得到結(jié)論.
解答: 解:由tan(x+
π
3
)≥-
3
-
π
3
+kπ≤x+
π
3
π
2
+kπ,
解得kπ-
3
≤x<
π
6
+kπ,
故不等式的解集為[kπ-
3
,
π
6
+kπ),k∈Z,
故答案為:[kπ-
3
,
π
6
+kπ),k∈Z,
點評:本題主要考查三角不等式的求解,利用正切函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點為坐標(biāo)原點,對稱軸為x軸,且過點P(-2,2
2
),則拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項和為Sn,滿足2Sn=3an-3(n∈N*)數(shù)列{
cn
an
}是等差數(shù)列,其第三項和第九項分別是a1和-a2
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{cn}的通項公式及前n項和Tn
(3)如果對任意的n∈N*,不等式-t2+at+80≥cn恒成立,求使關(guān)于t的不等式有解的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足不等式組
x+y≤2
y-x≤2
y≥1
,則
y
x+3
的取值范圍是( 。
A、[0,
2
3
]
B、[
1
4
,
2
3
]
C、[0,
1
2
]
D、[
1
4
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

(1)數(shù)列{an}是遞增數(shù)列還是遞減數(shù)列?為什么?
(2)證明:an
1
2
對一切正整數(shù)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+
2
x-1
+a,a∈R,
(1)當(dāng)a=2時,解不等式f(x)≥0;
(2)當(dāng)x>1時,若f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,1]上的函數(shù)f(x)是減函數(shù),且f(1-a)>f(a2-1),求實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①△ABC的三邊分別為a,b,c則該三角形是等邊三角形的充要條件為a2+b2+c2=ab+ac+bc;
②在△ABC中,“A>B”是“sinA>sinB”的充要條件;
③若命題P:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,則命題“p且-q“是假命題;
④已知a1,b1,c1,a2,b2,c2都是不等于零的實數(shù),關(guān)于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分別為P,Q,則
a1
a2
=
b1
b2
=
c1
c2
是P=Q的充分必要條件;
⑤“函數(shù)f(x)=tan(x+ϕ)為奇函數(shù)”的充要條件是“ϕ=kπ(k∈Z)”.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:(
32
×
3
6+(
2
2
 
4
3
-4(
16
49
 -
1
2
-
42
×80.25-(-2012)0

查看答案和解析>>

同步練習(xí)冊答案