A. | $\frac{f(a)+f(b)}{2}$>$\frac{f(b)-f(a)}{b-a}$ | B. | $\frac{f(a)+f(b)}{2}$=$\frac{f(b)-f(a)}{b-a}$ | C. | $\frac{f(a)+f(b)}{2}$<$\frac{f(b)-f(a)}{b-a}$ | D. | 無法確定 |
分析 作差,構造函數(shù)g(x)=x+2+(x-2)ex(x>0),利用導數(shù)研究其單調性即可比較大。
解答 解:$\frac{f(a)+f(b)}{2}$-$\frac{f(b)-f(a)}{b-a}$=$\frac{(b-a+2)+(b-a-2{)e}^{b-a}}{2(b-a)}$ea,
令g(x)=x+2+(x-2)ex(x>0),則g′(x)=1+(x-1)ex,
g′′(x)=xex>0,∴g′(x)在(0,+∞)上單調遞增,且g′(0)=0,
∴g′(x)>0,∴g(x)在(0,+∞)上單調遞增,
而g(0)=0,∴在(0,+∞)上,有g(x)>g(0)=0.
∵當x>0時,g(x)=x+2+(x-2)•ex>0,且a<b,
∴$\frac{(b-a+2)+(b-a-2{)e}^{b-a}}{2(b-a)}$ea>0,
即當a<b時,$\frac{f(a)+f(b)}{2}$>$\frac{f(b)-f(a)}{b-a}$,
故選:A.
點評 本題考查了比較兩個實數(shù)的大小等基礎知識,考查了分類討論的思想方法、轉化與化歸思想方法,考查了推理能力和計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | lg(m-n)>0 | B. | ($\frac{1}{2}$)m<($\frac{1}{2}$)n | C. | $\frac{n}{m}$<1 | D. | m2>n2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|3≤x<4} | B. | {x|0≤x<3} | C. | {3} | D. | {3,4} |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com