12.若m,n是實(shí)數(shù),且m>n,則下列結(jié)論成立的是(  )
A.lg(m-n)>0B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.$\frac{n}{m}$<1D.m2>n2

分析 對(duì)于A,C,D舉反例即可判斷,根據(jù)指數(shù)函數(shù)的單調(diào)性即可判斷B.

解答 解:對(duì)于A:若0<m-n<1,則lg(m-n)<0,故A不成立,
對(duì)于B:根據(jù)y=$(\frac{1}{2})^{x}$為減函數(shù),若m>n,則($\frac{1}{2}$)m<($\frac{1}{2}$)n,故B成立,
對(duì)于C:若m=-1,n=-2,則$\frac{n}{m}$=2>1,故C不成立,
對(duì)于D:若m=1,n=-2,則不成立,
故選:B

點(diǎn)評(píng) 本題主要考查了不等式的基本性質(zhì)和指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.當(dāng)x∈(-∞,-1]時(shí),不等式(m2-m)•4x-2x<0恒成立,則實(shí)數(shù)m的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ex(e=2.71828…是自然對(duì)數(shù)的底數(shù)),若a<b,則$\frac{f(a)+f(b)}{2}$與$\frac{f(b)-f(a)}{b-a}$的大小關(guān)系是( 。
A.$\frac{f(a)+f(b)}{2}$>$\frac{f(b)-f(a)}{b-a}$B.$\frac{f(a)+f(b)}{2}$=$\frac{f(b)-f(a)}{b-a}$C.$\frac{f(a)+f(b)}{2}$<$\frac{f(b)-f(a)}{b-a}$D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,⊙O中,弦AD∥BC,DA=DC,∠BCO=15°,則∠AOC等于( 。
A.120°B.130°C.140°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,∠A=2∠B,∠C的平分線交AB于點(diǎn)D,∠A的平分線交CD于點(diǎn)E.求證:AD•BC=BD•AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知不等式x2-2x+5-2a≥0.
(1)若不等式對(duì)于任意實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
(2)若存在實(shí)數(shù)a∈[4,$\sqrt{2016}}$]使得該不等式成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線過點(diǎn)(3,-4$\sqrt{2}$),($\frac{9}{4}$,5),則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{y^2}{16}-\frac{x^2}{9}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=-1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{16}-\frac{y^2}{9}=-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P為AB邊上一動(dòng)點(diǎn),PD∥BC交AC于點(diǎn)D,現(xiàn)將△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD,當(dāng)棱錐A′-PBCD的體積最大時(shí),PA的長(zhǎng)為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題p:x2-3x+2=0,命題q:x=2,則p是q的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案