【題目】已知函數(shù) ,

(1)討論的單調(diào)性;

(2)若存在最大值, 存在最小值,且,求證:

【答案】(1)遞增,在遞減.(2)證明見解析.

【解析】試題分析:(1)當(dāng)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,可求出函數(shù)的單調(diào)區(qū)間即可;;(2)求出的導(dǎo)數(shù),構(gòu)造函數(shù)求出的表達(dá)式,構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性證出結(jié)論.

試題解析:

(1)由題意知, , ,

時, , 遞減,

時,令 ,令 ,

遞增,在遞減.

(2)證明: ,

時, 恒成立, 遞增,無最小值,

由(1)知,此時無最大值,故.

,則,

,

故存在唯一,使得,即,

列表如下:

由(1)得:

, ,

由題意,即,將代入上式有:

化簡得: (*)

構(gòu)造函數(shù) ,

顯然單調(diào)遞增,且,

則存在唯一,使得.

時, , 單調(diào)遞減; 時, , 單調(diào)遞增.

,故只會在有解,

故(*)的解是,則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某幾何體的三視圖,則該幾何體的體積為( )

A. 12 B. 15 C. 18 D. 21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關(guān)于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?

(2)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為,且各株大樹是否成活互不影響.求移栽的4株大樹中:

(1)兩種大樹各成活1株的概率;

(2)成活的株數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為, 為坐標(biāo)原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為其導(dǎo)函數(shù).

(1) 設(shè),求函數(shù)的單調(diào)區(qū)間;

(2) 若, 設(shè), 為函數(shù)圖象上不同的兩點,且滿足,設(shè)線段中點的橫坐標(biāo)為 證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面, , 是棱上的一個動點, 的中點.

(Ⅰ)求證:平面平面;

(Ⅱ)若,求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章計算弧田面積所用的經(jīng)驗公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計算出弧田的面積約為( )

A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓C 上一點,點P到橢圓C的兩個焦點的距離之和為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)A,B是橢圓C上異于點P的兩點,直線PA與直線交于點M

是否存在點A,使得?若存在,求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案