【題目】已知橢圓 的離心率為 ,它的一個焦點到短軸頂點的距離為2,動直線l:y=kx+m交橢圓E于A、B兩點,設直線OA、OB的斜率都存在,且
(1)求橢圓E的方程;
(2)求證:2m2=4k2+3;
(3)求|AB|的最大值.

【答案】
(1)解:由題意可得: ,a=2,a2=b2+c2,解得a=2,c=1,b2=3.

∴橢圓E的方程為 =1


(2)證明:設A(x1,y1),B(x2,y2),

聯(lián)立 ,化為:(3+4k2)x2+8kmx+4m2﹣12=0,

△>0,∴x1+x2= ,x1x2= ,

=﹣ ,即3x1x2+4y1y2=0,

∴3x1x2+4(kx1+m)(kx2+m)=0,

化為:(3+4k2)x1x2+4km(x1+x2)+4m2=0,

∴(3+4k2 +4km +4m2=0,

化為:2m2=4k2+3


(3)解:由(2)可得:△=64k2m2﹣4(3+4k2)(4m2﹣12)>0,

化為:4k2+3>m2,∴4k2+3 ,∴k∈R.

|AB|=

=

=

= =

當且僅當k=0時,|AB|的最大值2


【解析】(1)根據(jù)橢圓的基本性質(zhì)解題;(2)本小題主要應用了根與系數(shù)的關系來化簡計算過程;(3)先根據(jù)(2)判斷點A,點B的存在性,再根據(jù)兩點間的距離公式線段AB長的表達式,最后求得線段AB的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設過拋物線 的焦點 的直線 交拋物線于點 ,若以 為直徑的圓過點 ,且與 軸交于 兩點,則 ( )
A.3
B.2
C.-3
D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式ax2﹣bx﹣1≥0的解集是[ ],求不等式x2﹣bx﹣a<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(I)判斷f(x)的奇偶性并證明

(Ⅱ)若a>1,判斷f(x)的單調(diào)性并用單調(diào)性定義證明;

(Ⅲ)若,求實數(shù)x的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如右圖拋物線頂點在原點,圓(x﹣2)2+y2=22的圓心恰是拋物線的焦點,

(Ⅰ)求拋物線的方程;
(Ⅱ)一直線的斜率等于2,且過拋物線焦點,它依次截拋物線和圓于A、B、C、D四點,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把一枚質(zhì)地均勻的骰子投擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.已知方程組

(1)求方程組只有一個解的概率;

(2)若方程組每個解對應平面直角坐標系中的點P(x,y),求點P落在第四象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個月中哪個月的月平均利潤最高?

2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;

3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第38月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn及使得Sn最大的序號n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[8595)

[95,105)

[105,115)

[115125)

頻數(shù)

6

26

38

22

8

(1)作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?

查看答案和解析>>

同步練習冊答案