【題目】已知某企業(yè)近3年的前7個(gè)月的月利潤(rùn)(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)最高?

2)通過計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);

3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測(cè)第38月份的利潤(rùn).

月份x

1

2

3

4

利潤(rùn)y(單位:百萬元)

4

4

6

6

相關(guān)公式: ,

【答案】(1)5月和6月的平均利潤(rùn)最高(2)詳見解析(3)940萬元.

【解析】試題分析:

(1)由折線圖,通過計(jì)算每個(gè)月的平均利潤(rùn)可得;

(2)分別計(jì)算出第1、2、3年前七個(gè)月的總利潤(rùn),由計(jì)算結(jié)果即可分析趨勢(shì);

(3)由題意將數(shù)據(jù)代入公式,列出回歸方程求解即可。

試題解析:

(1)由折線圖可知5月和6月的平均利潤(rùn)最高.

(2)第1年前7個(gè)月的總利潤(rùn)為(百萬元),

第2年前7個(gè)月的總利潤(rùn)為(百萬元),

第3年前7個(gè)月的總利潤(rùn)為(百萬元),

所以這3年的前7個(gè)月的總利潤(rùn)呈上升趨勢(shì).

(3)∵ , ,

,

,

,

當(dāng)時(shí), (百萬元),∴估計(jì)8月份的利潤(rùn)為940萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對(duì)稱軸間的距離為1,則f(1)+f(2)+f(3)+…+f(100)=(  )
A.0
B.100
C.150
D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有如下結(jié)論

①函數(shù)f(x)的值域是[-1,1];

②函數(shù)f(x)的減區(qū)間為[1,3];

③若存在實(shí)數(shù)x1、x2、x3x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1+x2<0;

④在③的條件下x3+x4=6;

⑤若方程f(x)=a有3個(gè)解,則<a≤1

其中正確的是

A. ①②③ B. ③④⑤ C. ②③⑤ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,它的一個(gè)焦點(diǎn)到短軸頂點(diǎn)的距離為2,動(dòng)直線l:y=kx+m交橢圓E于A、B兩點(diǎn),設(shè)直線OA、OB的斜率都存在,且
(1)求橢圓E的方程;
(2)求證:2m2=4k2+3;
(3)求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1 , l2分別過點(diǎn)A(3 ,2),B( ,6),它們分別繞點(diǎn)A,B旋轉(zhuǎn),但始終保持l1⊥l2 . 若l1與l2的交點(diǎn)為P,坐標(biāo)原點(diǎn)為O,則線段OP長(zhǎng)度的取值范圍是( )
A.[3,9]
B.[3,6]
C.[6,9]
D.[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過12噸時(shí),按4/噸計(jì)算水費(fèi);若用水量超過12噸且不超過14噸時(shí),超過12噸部分按6.60/噸計(jì)算水費(fèi);若用水量超過14噸時(shí),超過14噸部分按7.80/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照,,…,分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

Ⅰ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的平均數(shù)和中位數(shù)(精確到0.01);

求用戶用水費(fèi)用(元)關(guān)于月用水量(噸)的函數(shù)關(guān)系式;

Ⅲ)如圖2是該縣居民李某20171~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是.若李某20171~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義“等和數(shù)列”:在一個(gè)數(shù)列中,如果每一個(gè)項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做“等和數(shù)列”,這個(gè)常數(shù)叫做公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為6,求這個(gè)數(shù)列的前n項(xiàng)的和S=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓M過點(diǎn)P(10,4),且與直線4x+3y-20=0相切于點(diǎn)A(2,4)

(1)求圓M的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于OA的直線l與圓M相交于BC兩點(diǎn),且,求直線l的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a2n=n﹣an , a2n+1=an+1,則a1+a2+a3+…+a100=

查看答案和解析>>

同步練習(xí)冊(cè)答案