【題目】設等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn及使得Sn最大的序號n的值.

【答案】
(1)解:由an=a1+(n﹣1)d及a3=5,a10=﹣9得

a1+9d=﹣9,a1+2d=5

解得d=﹣2,a1=9,

數(shù)列{an}的通項公式為an=11﹣2n


(2)解:由(1)知Sn=na1+ d=10n﹣n2

因為Sn=﹣(n﹣5)2+25.

所以n=5時,Sn取得最大值


【解析】(1)設出首項和公差,根據(jù)a3=5,a10=﹣9,列出關(guān)于首項和公差的二元一次方程組,解方程組得到首項和公差,寫出通項.(2)由上面得到的首項和公差,寫出數(shù)列{an}的前n項和,整理成關(guān)于n的一元二次函數(shù),二次項為負數(shù)求出最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】用斜二測畫法畫出下列水平放置的正五邊形和四邊形的直觀圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知A為銳角,f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),五邊形中, .如圖(2),將沿折到的位置,得到四棱錐.點為線段的中點,且平面

(1)求證:平面平面;

(2)若直線所成角的正切值為,設,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率為,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過原點的直線與橢圓交于, 兩點( 不是橢圓的頂點),點在橢圓上,且.直線軸、軸分別交于兩點.設直線的斜率分別為,證明存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了解高一年級學生身高發(fā)育情況,對全校700名高一年級學生按性別進行分層抽樣檢查,測得身高(單位: )頻數(shù)分布表如表1、表2.

表1:男生身高頻數(shù)分布表

表2:女生身高頻數(shù)分布表

(1)求該校高一女生的人數(shù);

(2)估計該校學生身高在的概率;

(3)以樣本頻率為概率,現(xiàn)從高一年級的男生和女生中分別選出1人,設表示身高在學生的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與向量 =(2,sinC)共線,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函數(shù)f(x)可能是(
A.f(x)=2sin x
B.f(x)=2cos2 x
C.f(x)=2cos2 x
D.f(x)=2cos x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,設S為△ABC的面積,滿足S= (a2+b2﹣c2).
(1)求角C的大小;
(2)求sinA+sinB的最大值.

查看答案和解析>>

同步練習冊答案