12.加圖所示,一個(gè)空間幾何體的主視圖和左視圖都是邊長為3的正方形,俯視圖是一個(gè)直徑為3的圓,那么這個(gè)幾何體的全面積為36π.

分析 由三視圖得到幾何體是底面半徑為3,高為3的圓柱,由此計(jì)算體積.

解答 解:由題意,幾何體是底面半徑為3,高為3的圓柱,所以全面積為2π×32+6π×3=36π;
故答案為:36π.

點(diǎn)評(píng) 本題考查了幾何體的三視圖以及幾何體的全面積求法;關(guān)鍵是正確還原幾何體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.正三角形ABC的邊長為1,向量$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且0≤x,y≤1,$\frac{1}{2}$≤x+y≤1,則動(dòng)點(diǎn)P的軌跡所形成的面積為$\frac{3\sqrt{3}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=3,Sn+1=3Sn+3(n∈N*),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{n}{{{a_{n+1}}-{a_n}}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC的內(nèi)切圓與邊AB,AC,BC相切于點(diǎn)P,Q,R,若|CR|=1,|AB|=2,則動(dòng)點(diǎn)C的軌跡曲線的離心率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,向量$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$夾角為$\frac{2π}{3}$,則$\overrightarrow{a}$$•\overrightarrow$的取值范圍是$[2-\frac{4\sqrt{3}}{3},2+\frac{4\sqrt{3}}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.點(diǎn)E是正方形ABCD的邊DC的中點(diǎn),F(xiàn)是BE中點(diǎn),且$\overrightarrow{AB}$=$\overrightarrow{a}$.$\overrightarrow{AD}$=$\overrightarrow$.則$\overrightarrow{DF}$=( 。
A.$\frac{1}{2}\overrightarrow{a}$-$\frac{3}{4}$$\overrightarrow$B.$\frac{1}{2}\overrightarrow$-$\frac{3}{4}\overrightarrow{a}$C.$\frac{3}{4}\overrightarrow$-$\frac{1}{2}\overrightarrow{a}$D.$\frac{3}{4}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),且圓C與直線x+y+3=0相切.
(I)求圓C的方程;
(Ⅱ)過點(diǎn)P(0,1)作傾斜角互補(bǔ)的兩條直線,分別與圓C相交A、B兩點(diǎn).試判斷直線AB的斜率是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在10L水中有3個(gè)細(xì)菌,從中任取4L水,設(shè)其中含有細(xì)菌的個(gè)數(shù)為X,求:
(1)P(X=1);
(2)X的概率分布;
(3)E(X),D(X).(注:結(jié)果都用小數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{|2x+1|,|x-y+5|}的最小值為3.

查看答案和解析>>

同步練習(xí)冊答案