20.已知數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,a7-a5=4,a11=21,Sk=64,則k=(  )
A.6B.7C.8D.9

分析 利用等差數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此利用等差數(shù)列的前n項(xiàng)和公式能求出k.

解答 解:∵數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,a7-a5=4,a11=21,Sk=64,
∴$\left\{\begin{array}{l}{{a}_{1}+6d-({a}_{1}+4d)=4}\\{{a}_{1}+10d=21}\end{array}\right.$,
解得a1=1,d=2,
∴Sk=k+$\frac{k(k-1)}{2}×2=64$,
即k2=64
解得k=8或k=-8(舍).
故選:C.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.要做一個(gè)圓錐形漏斗,其母線長(zhǎng)為30cm,要使其體積最大,則其高應(yīng)為(  )
A.12$\sqrt{3}$cmB.10$\sqrt{3}$cmC.8$\sqrt{3}$cmD.5$\sqrt{3}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圓x2+y2-4x=0的圓心坐標(biāo)和半徑分別為( 。
A.(2,0),4B.(2,0),2C.(-2,0),4D.(-2,0),2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,四棱錐P-ABCD的底面是邊長(zhǎng)為a的菱形,∠DAB=60°,側(cè)面PAD⊥底面ABCD,PA=PD.
(1)證明:AD⊥PB;
(2)若PB=$\frac{\sqrt{5}}{2}$a,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求點(diǎn)P(1,0)到直線l:4x-3y+1=0的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=x+asinx.
(1)若a=1.求f(x)在區(qū)間[0,1]上的最大值;
(2)若f(x)在(-∞,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列1,4,7,10,…則19是它的( 。
A.第6項(xiàng)B.第7項(xiàng)C.第8項(xiàng)D.第9項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,a8=11,d=3,求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.為了響應(yīng)政府推進(jìn)“菜籃子”工程建設(shè)的號(hào)召,某經(jīng)銷商投資60萬元建了一個(gè)蔬菜生產(chǎn)基地.第一年支出各種費(fèi)用8萬元,以后每年支出的費(fèi)用比上一年多2萬元.每年銷售蔬菜的收入為26萬元.設(shè)f(n)表示前n年的純利潤(rùn)(f(n)=前n年的總收入-前n年的總費(fèi)用支出-投資額),則f(n)=-n2+19n-60(用n表示);從第5年開始盈利.

查看答案和解析>>

同步練習(xí)冊(cè)答案