【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=k3n﹣m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1 , 求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】證明:(I)∵ ,∴S1=a1=3k﹣m=3,a3=S3﹣S2=18k=27,解得
則當(dāng)n≥2時(shí),
又a1=3,∴n∈N* ,
為常數(shù),故由等比數(shù)列的定義可知,數(shù)列{an}是等比數(shù)列.
(II)解:∵anbn=log3an+1 , ∴
,
,
,
(n∈N*
【解析】(I)利用遞推關(guān)系與等比數(shù)列的定義即可證明.(II)利用“錯(cuò)位相減法”、等比數(shù)列的求和公式即可得出.
【考點(diǎn)精析】關(guān)于本題考查的等比關(guān)系的確定和數(shù)列的前n項(xiàng)和,需要了解等比數(shù)列可以通過(guò)定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若關(guān)于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8個(gè)不同的實(shí)數(shù)根,則b+c的取值范圍為(
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是以AB為直徑的圓,點(diǎn)C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長(zhǎng)線與AB的延長(zhǎng)線交于點(diǎn)E.若EB=6,EC=6 ,則BC的長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4個(gè)人去參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某測(cè)試中,卷面滿(mǎn)分為100分,60分為及格,為了調(diào)查午休對(duì)本次測(cè)試前兩個(gè)月復(fù)習(xí)效果的影響,特對(duì)復(fù)習(xí)中進(jìn)行午休和不進(jìn)行午休的考生進(jìn)行了測(cè)試成績(jī)的統(tǒng)計(jì),數(shù)據(jù)如下表所示:

分?jǐn)?shù)段

29~

40

41~

50

51~

60

61~

70

71~

80

81~

90

91~

100

午休考

生人數(shù)

23

47

30

21

14

31

14

不午休

考生人數(shù)

17

51

67

15

30

17

3

(1)根據(jù)上述表格完成列聯(lián)表:

及格人數(shù)

不及格人數(shù)

總計(jì)

午休

不午休

總計(jì)

(2)根據(jù)列聯(lián)表可以得出什么樣的結(jié)論?對(duì)今后的復(fù)習(xí)有什么指導(dǎo)意義?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)城校區(qū)與本部校區(qū)之間的駕車(chē)單程所需時(shí)間為,只與道路暢通狀況有關(guān),對(duì)其容量為500的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如下:

(分鐘)

25

30

35

40

頻數(shù)(次)

100

150

200

50

以這500次駕車(chē)單程所需時(shí)間的頻率代替某人1次駕車(chē)單程所需時(shí)間的概率.

(1)求的分布列與;

(2)某天有3位教師獨(dú)自駕車(chē)從大學(xué)城校區(qū)返回本部校區(qū),記表示這3位教師中駕車(chē)所用時(shí)間少于的人數(shù),求的分布列與;

(3)下周某天張老師將駕車(chē)從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求張老師從離開(kāi)大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時(shí)間不超過(guò)120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(
A.﹣2
B.
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1+x﹣ + ﹣…+ + ,則下列結(jié)論正確的是(
A.f(x)在(0,1)上恰有一個(gè)零點(diǎn)
B.f(x)在(0,1)上恰有兩個(gè)零點(diǎn)
C.f(x)在(﹣1,0)上恰有一個(gè)零點(diǎn)
D.f(x)在(﹣1,0)上恰有兩個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長(zhǎng)度單位為長(zhǎng)度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案