若實(shí)數(shù)x,y滿足
x-y+1≥0
y≥0
x≤2
,則z=2x+y的最大值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,進(jìn)行平移即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)B時(shí),
直線y=-2x+z的截距最大,此時(shí)z最大,
x=2
x-y+1=0
,解得
x=2
y=3

即B(2,3),此時(shí)z=2×2+3=7,
故答案為:7
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+
a
x
-2),其中常數(shù)a>0.
(1)求函數(shù)f(x)的定義域;
(2)若對(duì)任意x∈[2,+∞),恒有f(x)>0,試確定a的取值范圍;
(2)記函數(shù)f(x)在[2,+∞)上的最小值為g(a),求關(guān)于a的方程g(a)=m的解(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如程序框圖運(yùn)行結(jié)果是( 。 
A、11B、8C、5D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-4,0)∪(0,4]上的奇函數(shù),當(dāng)時(shí),f(x)的圖象如圖所示,那么f(x)的值域是( 。
A、(-4,4)
B、[-6,6]
C、(-4,4)∪(4,6]
D、[-6,-4)∪(4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥1
x-2y≥-2
3x-2y≤3
,則z=x+2y的最大值是(  )
A、6
B、
17
2
C、7
D、
29
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有兩種投資方案,一年后投資盈虧的情況如下:
(1)投資股市:
投資結(jié)果獲利40%不賠不賺虧損20%
概  率
1
2
1
8
3
8
(2)購買基金:
投資結(jié)果獲利20%不賠不賺虧損10%
概  率p
1
3
q
(Ⅰ)當(dāng)p=
1
4
時(shí),求q的值;
(Ⅱ)已知甲、乙兩人分別選擇了“投資股市”和“購買基金”進(jìn)行投資,如果一年后他們中至少有一人獲利的概率大于
4
5
,求p的取值范圍;
(Ⅲ)丙要將家中閑置的10萬元錢進(jìn)行投資,決定在“投資股市”和“購買基金”這兩種方案中選擇一種,已知p=
1
2
,q=
1
6
,那么丙選擇哪種投資方案,才能使得一年后投資收益的數(shù)學(xué)期望較大?給出結(jié)果并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

頂點(diǎn)在原點(diǎn),經(jīng)過圓C:x2+y2-2x+2
2
y=0的圓心且準(zhǔn)線與x軸垂直的拋物線方程為(  )
A、y2=-2x
B、y2=2x
C、y=
2
x2
D、y=-
2
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面內(nèi),設(shè)到定點(diǎn)F(0,2)和x軸距離之和為4的點(diǎn)P軌跡為曲線C,直線l過點(diǎn)F,交曲線C于M,N兩點(diǎn).
(1)說明曲線C的形狀,并畫出圖形;
(2)求線段MN長度的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c且sin2A-cosA=0.
(1)求角A的大小;
(2)若b=
3
,sinB=
3
sinC,求a.

查看答案和解析>>

同步練習(xí)冊答案