17.在平面直角坐標系中,點A的坐標為(2,3),點B的坐標為(-1,-1),將直角坐標平面沿x軸折成直二面角,則A,B兩點間的距離為$\sqrt{19}$.

分析 轉(zhuǎn)化平面坐標為空間坐標,利用空間距離公式求解即可.

解答 解:在平面直角坐標系中,點A的坐標為(2,3),點B的坐標為(-1,-1),將直角坐標平面沿x軸折成直二面角,則A的空間坐標(2,0,3),B的空間坐標(-1,-1,0),
則A,B兩點間的距離為:$\sqrt{(2+1)^{2}+({0+1)}^{2}+(3-0)^{2}}$=$\sqrt{19}$.
故答案為:$\sqrt{19}$.

點評 本題考查空間距離公式的應用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{3-4x}{2x-1},x∈[0,\frac{1}{4}]}\\{\frac{1}{2}lo{g}_{2}x-3,x∈(\frac{1}{4},1]}\end{array}\right.$,g(x)=x3-3ax2-2a(a≥1),若對于任意x1∈[0,1]總存在x2∈[0,1],使得g(x2)=f(x1)成立,則a的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.(1,$\frac{3}{2}$]C.[1,$\frac{3}{2}$)D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.f(x),g(x)是定義在[a,b]上的連續(xù)函數(shù),則“f(x)的最大值小于g(x)的最小值”是“f(x)<g(x)對一切x∈[a,b]成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在極坐標系中,求圓ρ=8sinθ上的點到直線θ=$\frac{π}{3}$(ρ∈R)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知a<-2,則函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax的單調(diào)遞增區(qū)間為(0,-$\frac{1}{a}$),($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示,AB為圓O的直徑,BC,CD為圓O的切線,B,D為切點.
(Ⅰ)求證:AD∥OC;
(Ⅱ)若AD•OC=8,求圓O的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.定義在R上的可導函數(shù)f(x)滿足(x-314)f(2x)-2xf′(2x)>0恒成立,求證:?x∈R,f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在Rt△ABC中,A=90°,AB=AC=2$\sqrt{2}$,D、E分別為AC、AB的中點,將△ABC沿著DE折疊,使平面ADE⊥平面CDEB.
(I)若F為AC的中點,求證:DF∥平面ABE;
(Ⅱ)設(shè)θ為平面ABE與平面ACD兩個平面相交所成的銳角,求θ的正弦值;
(Ⅲ)點H是線段BC上一個動點(點H不與B、C重合),是否存在點H運動到某一位置,使得DH⊥AE成立,如果成立,確定H的位置,如果不成立,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.6

查看答案和解析>>

同步練習冊答案