已知函數(shù)f(x)=
x2
1+x2
,f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011
)=
 
考點(diǎn):函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(x)+f(
1
x
)=
x2
1+x2
+
1
x2
1+
1
x2
=1,由此能求出f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011
).
解答: 解:∵函數(shù)f(x)=
x2
1+x2

∴f(x)+f(
1
x
)=
x2
1+x2
+
1
x2
1+
1
x2
=1,
∴f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011

=f(1)+2010×1
=
1
1+1
+2010

=2010.5.
故答案為:2010.5.
點(diǎn)評(píng):本題考查函數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(wx+φ)(A>0,w>0,|φ|<
π
2
)的圖象在y軸上的截距為
3
,它在y軸右側(cè)的第一個(gè)最大值點(diǎn)和最小值點(diǎn)分別為(x0,2)和(x0+π,-2).
(1)求函數(shù)f(x)的解析式;
(2)若△ABC中的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且銳角A滿足f(A-
π
3
)=
3
,
又已知a=7,sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且B=
π
3

(Ⅰ)若a=2,b=
7
,求c的值;
(Ⅱ)設(shè)b=
3
,S為△ABC的面積,求
3
S-cosAcosC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心在x軸正半軸上,半徑為2,且與直線x-
3
y+2=0相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<x<1,a=2
x
,b=1+x,c=
1
1-x
,則其中最大的是( 。
A、aB、bC、cD、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)條件求下列函數(shù)的解析式:
(1)f(x)=3x2-2求f(2x-1)的解析式
(2)f(
x
+1)=x+2
x
.求f(x)的解析式;
(3)f(x)為二次函數(shù)且f(0)=3,f(x+2)-f(x)=4x+2.求f(x)的解析式;
(4)已知2f(x)-f(-x)=x+1,求f(x)的解析式.
(5)設(shè)f(x)是R上的函數(shù),且滿足f(0)=1,并且對(duì)任意實(shí)數(shù)x,y有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A中含有元素2,3,a2+2a-3,集合B中含有元素2,|a+3|,若5∈A且5∉B,則實(shí)數(shù)a的值為(  )
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lg5+lg2+eln2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-1,2,3,7},B={0,2,3,8},則A∪B=( 。
A、{-1,2,3,7}
B、{0,2,3,8}
C、{2,3}
D、{-1,0,2,3,7,8}

查看答案和解析>>

同步練習(xí)冊(cè)答案