【題目】已知函數(shù) 是自然對數(shù)的底數(shù), .
(1)求函數(shù) 的單調遞增區(qū)間;
(2)若 為整數(shù), ,且當 時, 恒成立,其中 為 的導函數(shù),求 的最大值.
【答案】
(1)解: .
若 ,則 恒成立,所以, 在區(qū)間 上單調遞增
若 ,當 時, , 在 上單調遞增.
綜上,當 時, 的增區(qū)間為 ;當 時, 的增區(qū)間為
(2)解:由于 ,所以,
當 時, ,故 ————①
令 ,則
函數(shù) 在 上單調遞增,而
所以 在 上存在唯一的零點,
故 在 上存在唯一的零點.
設此零點為 ,則 .
當 時, ;當 時, ;
所以, 在 上的最小值為 .由 可得
所以, 由于①式等價于 .
故整數(shù) 的最大值為2.
【解析】(1)根據(jù)題意求出導函數(shù)討論a的取值范圍即可得出函數(shù)的增區(qū)間。(2)由已知運用參數(shù)分離可得求出導函數(shù)利用導函數(shù)的性質即可得到原函數(shù)的單調區(qū)間,再運用零點存在定理即可求得k的最大值。
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調性和函數(shù)的極值與導數(shù)的相關知識點,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某校有教師400人,對他們進行年齡狀況和學歷的調查,其結果如下:
學歷 | 35歲以下 | 35-55歲 | 55歲及以上 |
本科 | 60 | 40 | |
碩士 | 80 | 40 |
(1)若隨機抽取一人,年齡是35歲以下的概率為,求;
(2)在35-55歲年齡段的教師中,按學歷狀況用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學歷為本科的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).有甲、乙兩人獨立來該租車點騎游(各組一車一次).設甲、乙不超過兩小時還車的概率分別為 , ;兩小時以上且不超過三小時還車的概率分別為 , ;兩人租車時間都不會超過四小時.
(1)求甲、乙兩人所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量 ,求 的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為 .第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金 (元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點,M為橢圓上除長軸端點外的任意一點,且△MF1F2的周長為4+2 .
(1)求橢圓C的方程;
(2)過點D(0,﹣2)作直線l與橢圓C交于A、B兩點,點N滿足 (O為原點),求四邊形OANB面積的最大值,并求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù),其中,記函數(shù)的定義域為.
(1)求函數(shù)的定義域;
(2)若函數(shù)的最大值為,求的值;
(3)若對于內的任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和為,且滿足+n=2(n∈)
(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(2)數(shù)列滿足(n∈),其前n項和為,試求滿足+>2018的最小正整數(shù)n.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com