【題目】某校有教師400人,對他們進(jìn)行年齡狀況和學(xué)歷的調(diào)查,其結(jié)果如下:

學(xué)歷

35歲以下

35-55

55歲及以上

本科

60

40

碩士

80

40

(1)若隨機(jī)抽取一人,年齡是35歲以下的概率為,求;

(2)在35-55歲年齡段的教師中,按學(xué)歷狀況用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學(xué)歷為本科的概率.

【答案】(1)20;(2)

【解析】分析:(1)(1)由由古典概型概率公式,解得,;(2)由分層抽樣的規(guī)律可知,需學(xué)歷為研究生的2人,記為,學(xué)歷為本科的3人,記為的,列舉可得總的基本事件找出符合題意得基本事件,由古典概型公式可得.

詳解(1)由已知可知,解得,

.

(2)由分層抽樣的規(guī)則可知,樣本中學(xué)歷為碩士的人數(shù)為人,記為,

學(xué)歷為本科的人數(shù)為人.記為,

從中任選2人所有的基本事件為

共10個,

設(shè)“至多有1人的學(xué)歷為本科”為事件,則事件包含的基本事件為

,共7個.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司有6名產(chǎn)品推銷員,其中工作年限與年推銷金額數(shù)據(jù)如下表:

推銷員編號

1

2

3

4

5

工作年限/年

3

5

6

7

9

推銷金額/萬元

2

3

4

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)求年推銷金額關(guān)于工作年限的線性回歸方程;

(3)若第6名推銷員的工作年限為11年,試估計他的年推銷金額.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,所對的邊分別為 (其中).

(1)若時,判斷為的形狀;

(2)若,且,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓

(1)直線過點,被圓截得的弦長為,求直線的方程;

(2)直線的的斜率為1,且被圓截得弦,若以為直徑的圓過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實數(shù),函數(shù)f(x)=x3﹣x2﹣x+a , 若函數(shù)f(x)過點A(1,0),求函數(shù)在區(qū)間[﹣1,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過定點P(1,1),且傾斜角為 ,以坐標(biāo)原點為極點,x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.

非一線

一線

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )
A.命題“若 ,則 ”的逆否命題為:“若 ,則
B.“ ”是“ ”的充分不必要條件
C.若 為假命題,則 、 均為假命題
D.命題 :“ ,使得 ”,則 :“ ,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是自然對數(shù)的底數(shù), .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)若 為整數(shù), ,且當(dāng) 時, 恒成立,其中 的導(dǎo)函數(shù),求 的最大值.

查看答案和解析>>

同步練習(xí)冊答案