【題目】如圖,已知焦點在x軸上的橢圓有一個內含圓x2+y2=,該圓的垂直于x軸的切線交橢圓于點M,N,且 (O為原點).
(1)求b的值;
(2)設內含圓的任意切線l交橢圓于點A、B.求證:,并求|AB|的取值范圍.
【答案】(1)2;(2)證明見解析,.
【解析】
(1)設的坐標,利用,求得,得到點代入橢圓的方程,即可求解;
(2)分類討論,當軸時,由(1)知;當不與軸垂直時,設的方程為,代入橢圓的方程,利用韋達定理證得,再利用弦長公式,結合換元法和二次函數的性質,即可求解.
(1)由圓的垂直于x軸的切線交橢圓于點M,N,,
可得直線的方程為,
設,
由,即,解得,
可得點在橢圓上,代入橢圓方程,
可得.
(2)當軸時,由(1)知,
當不與軸垂直時,設的方程為,即,
則原點到直線的距離,可得,整理得,
把直線代入橢圓的方程,
整理得,
則,
設,則,
所以,即,
即橢圓內含圓的任意切線交橢圓時,總有,
當軸時,可得;
當不與軸垂直時,可得,
設,則,
則,
所以當,即時,的取最大值,
當,即時,的取最小值,
綜上可得,的取值范圍是.
科目:高中數學 來源: 題型:
【題目】為響應德智體美勞的教育方針,唐徠回中高一年級舉行了由全體學生參加的一分鐘跳繩比賽,計分規(guī)則如下:
每分鐘跳繩個數 | 185以上 | ||||
得分 | 16 | 17 | 18 | 19 | 20 |
年級組為了了解學生的體質,隨機抽取了100名學生,統(tǒng)計了他的跳繩個數,并繪制了如下樣本頻率直方圖:
(1)現(xiàn)從這100名學生中,任意抽取2人,求兩人得分之和小于35分的概率(結果用最簡分數表示);
(2)若該校高二年級2000名學生,所有學生的一分鐘跳繩個數近似服從正態(tài)分布,其中,為樣本平均數的估計值(同一組中數據以這組數據所在區(qū)間的中點值為代表).利用所得到的正態(tài)分布模型解決以下問題:
①估計每分鐘跳繩164個以上的人數(四舍五入到整數)
②若在全年級所有學生中隨機抽取3人,記每分鐘跳繩在179個以上的人數為,求的分布列和數學期望與方差.
(若隨機變量服從正態(tài)分布則,,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某媒體為調查喜愛娛樂節(jié)目A是否與觀眾性別有關,隨機抽取了30名男性和30名女性觀眾,抽查結果用等高條形圖表示如圖:
根據該等高條形圖,完成下列2×2列聯(lián)表,并用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目A與觀眾性別有關?
喜歡節(jié)目A | 不喜歡節(jié)目A | 總計 | |
男性觀眾 | |||
女性觀眾 | |||
總計 | 60 |
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是( )
A. 從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;
B. 2011年該地區(qū)環(huán)境基礎設施的投資額比2000年至2004年的投資總額還多;
C. 2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番 ;
D. 為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右頂點為A,下頂點為B,過A、O、B(O為坐標原點)三點的圓的圓心坐標為.
(1)求橢圓的方程;
(2)已知點M在x軸正半軸上,過點B作BM的垂線與橢圓交于另一點N,若∠BMN=60°,求點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com