【題目】已知、是橢圓上的兩點,且,其中為橢圓的右焦點.
(1)求實數(shù)的取值范圍;
(2)在軸上是否存在一個定點,使得為定值?若存在,求出定值和定點坐標;若不存在,說明理由.
【答案】(1)(2)存在定點,使得為定值
【解析】
(1)討論直線的斜率為0與不為0,斜率為0時,直接得到,斜率不為0時,設直線為,聯(lián)立可得到,.即可得到,又等價于,代入即可解出實數(shù)的取值范圍。
(2)假設存在點,使得為定值,令 由(1)的結果代入計算,得到為定值,即,解出即可得到答案。最后說明直線的斜率為0是也成立即可。
(1)由已知條件知:直線過橢圓右焦點.
當直線與軸重合時,.
當直線不與軸重合時,可設:,代入橢圓方程,并整理得.
設,,由根與系數(shù)的關系得,.
所以.又由得,所以,解之得.
綜上,實數(shù)的取值范圍是.
(2)設,則
為定值,所以,解得.
故存在定點,使得為定值.
(經(jīng)檢驗,當與軸重合時也成立)
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;
(Ⅱ)若該市政府擬采取分層抽樣的方法在用水量噸數(shù)為和之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設為用水量噸數(shù)在中的獲獎的家庭數(shù),為用水量噸數(shù)在中的獲獎家庭數(shù),記隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某地區(qū)高三學生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17.5歲~18歲的男生體重(kg),得到頻率分布直方圖如下:求:
(1)根據(jù)直方圖可得這100名學生中體重在(56,64)的學生人數(shù).
(2)請根據(jù)上面的頻率分布直方圖估計該地區(qū)17.5-18歲的男生體重.
(3)若在這100名男生中隨意抽取1人,該生體重低于62的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=9及點C(2,1),過點C的直線l與圓O交于P,Q兩點,當△OPQ的面積最大時,直線l的方程為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)求經(jīng)過點P(4,1),且在兩坐標軸上的截距相等的直線方程.
(2)設直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點,若|AB|=2,求圓C的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司每年生產(chǎn)、銷售某種產(chǎn)品的成本包含廣告費用支出和浮動成本兩部分,該產(chǎn)品的年產(chǎn)量為萬件,每年投入的廣告費為萬元,另外,當年產(chǎn)量不超過萬件時,浮動成本為萬元,當年產(chǎn)量超過萬件時,浮動成本為萬元.若每萬件該產(chǎn)品銷售價格為萬元,且每年該產(chǎn)品都能銷售完.
(1)設年利潤為(萬元),試求關于的函數(shù)關系式;
(2)年產(chǎn)量為多少萬件時,該公司所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中所有正確的序號是____.
(1),對應:是映射;
(2)函數(shù)和都是既奇又偶函數(shù);
(3)已知對任意的非零實數(shù)都有,則;
(4)函數(shù)的定義域是,則函數(shù)的定義域為;
(5)函數(shù)在和上都是增函數(shù),則函數(shù)在上一定是增函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com